<table>
<thead>
<tr>
<th>Purpose Code</th>
<th>Object Code</th>
<th>Salaries 100</th>
<th>Retirement Fringe Benefits 200</th>
<th>Purchased Services 400</th>
<th>Supplies 500</th>
<th>Capital Outlay 600</th>
<th>Other 800</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>211,387.00</td>
<td>0.00</td>
<td>211,387.00</td>
</tr>
<tr>
<td>Support Services</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Governance/Admin</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Prof Development</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>100,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>100,000.00</td>
</tr>
<tr>
<td>Family/Community</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Facilities</td>
<td></td>
<td>2,560.00</td>
<td>0.00</td>
<td>5,000.00</td>
<td>0.00</td>
<td>399,700.00</td>
<td>0.00</td>
<td>407,260.00</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>2,560.00</td>
<td>0.00</td>
<td>105,000.00</td>
<td>0.00</td>
<td>611,087.00</td>
<td>0.00</td>
<td>718,647.00</td>
</tr>
</tbody>
</table>

Adjusted Allocation: 0.00
Remaining: -718,647.00
The problem: While Olentangy Local Schools’ students achieve proficiency in many areas of science and math as measured by standardized tests (OAA, OGT, ACT QualityCore), the number of students achieving College and Career Readiness benchmarks in these areas is below expectations. (see fig 2) This proposal is designed to address this skill and knowledge deficit to improve and accelerate the achievement of our students in grades 7-12 in STEM areas, and by extension increase the number of our high school graduates who select college majors in STEM fields. To affect these changes, we present two integrated components: The first part is a funding request to establish and outfit a digital fabrication lab, or Fab Lab, based on the Massachusetts Institute of Technology’s concept, design and specifications. The second part of this proposal is a request for funding to retrofit and furnish an existing and relatively unused area in Olentangy Shanahan Middle School to support learning spaces for the 2014 roll-out of the Olentangy STEM Center. The Fab Lab will provide Olentangy students and teachers - along with K-12 students from other districts, specialized programs, and post-secondary institutions.
12. Describe how it will meet the goal(s) selected above. If school/district receives school improvement funds/support, include a brief explanation of how this project will advance the improvement plan.

The Olentangy Local School District does not receive school improvement funds. The goals of the Straight A Fund align closely with Olentangy Local Schools' own academic, operational, and financial objectives that have been established to guide our activities for the next five years. Student Achievement We will increase the number of students who are accelerated or advanced in STEM curricular areas, using state and standardized testing as a measure of progress when appropriate, and performance-based assessments as they are developed. Another important measure of student growth in the STEM areas will be annual monitoring of student performance as compared to ACT’s College and Career Readiness benchmarks (see fig. 2). Measurable increases in achievement will be accomplished in increasing opportunities for students to learn from STEM professionals while working side-by-side on genuine and complex problems that emerge naturally from the disciplines. A significant upgrade of lab facilities and in-service development for STEM teachers are other key components to accelerated growth in achievement measures. Another important measure of success will be an increase in the number of OLSD’s graduating seniors who commit to STEM majors in college. Spending reductions in the five-year fiscal forecast is the district and its stakeholders’ stated goal to reduce or maintain current spending on “brick and mortar” and self-limiting solutions to our continuing student increase in enrollment. Olentangy has been Ohio’s fastest growing district for more than a decade and the need for additional facilities and the one student to one desk ratio is no longer the model that supports optimal learning in all curricular areas.

13. Financial Documentation - All applicants must enter or upload the following supporting information. Responses should refer to specific information when applicable.

- a. Enter a project budget
- b. Upload the Straight-A Financial Impact Template forecasting the expected changes to the five-year forecast resulting from implementation of this project. If applying as a consortia or partnership, please include the five-year forecasts of each school district, community school or STEM school member for review.
- c. If subsection (b) is not applicable, please explain why, in addition to how the project will demonstrate sustainability and impact.

14. What is the total cost for implementing the innovative project?

$718,647.00 Total project cost

* Provide a brief narrative explanation of the overall budget. The narrative should include the source and amount of other funds that may be used to support this concept (e.g., Title I funding, RTT money, local fundraising, etc.); costs/estimates on the cost items included in the budget (i.e., staff counts and salary/benefits, equipment to be purchased and cost, etc.);

Line item #1: $158,901. Procurement costs for Fab Lab equipment and professional development for Fab Lab gurus. Price quotes are provided by Teaching Fab Team Project Support | TIES Teaching Institute for Excellence in STEM, the organization that provides support for schools that incorporate MIT’s Fab Lab into their facility and culture. Orders for lab equipment will be placed with assistance from TIES along with installation and other start-up, maintenance and training during the first year of the program. The costs quoted include equipment for the Fab Lab and materials for approximately one year of typical use; also shipping, installation, and technical training. While existing Olentangy teachers will be Fab Lab gurus, the cost of training five individuals to share this responsibility, at $3,750 each, is $18,750. These OLSD teachers will be experienced in technology and STEM education fields and will allow for flexibility in covering the Lab during after-school and summer hours to accommodate community groups and collaboration and training with teachers. (Costs outlined in TIES proposal of October 21, 2013). Line item #2: $100,000. In addition to Fab Lab training, TIES will provide “wrap-around” services to support the development of integrated STEM curriculum and will facilitate the process that will move Olentangy from the “Current School landscape” to STEM Transformative School (see fig.4, 4) through professional development and consultation during year one of the grant. The combination of science and engineering training is uncommon in the experience of middle school technology teachers, the five-month, part-time training with Fab Ed to develop competent and effective gurus who can facilitate many students through the lab and design the engineering process will be supported to teachers, also. Line item #3: $399,700. The estimated costs to retrofit Olentangy’s existing east cafeteria space and kitchen area to create learning spaces for the Olentangy STEM Center and Fab Lab were compiled by Bruce T. Runyon, AIA, LEED AP and Executive Director/Principal of Fanning Howey Architects. These are:

- Line item #4: $23,812. Furnishings for Olentangy STEM Center and Fab Lab. Prices quoted on items are from Olentangy’s furniture suppliers and Steelcase Inc. Furnishings will accommodate 130+ students and two teachers in small meeting rooms. Line item #5: $7,960. Custodial staff ($40 per hour) and operational costs on weekends (electricity, water, heating, and cooling) are based on estimates of these costs based on last summer’s utility and union guidelines that dictate salaries for custodians. Line item #6 and #7: $24,076. Two Chrome laptop carts (30 laptops each) and four teacher laptops and $3,950 for three Mimio and projector combinations. The costs of the Chrome laptops and Mimio/Projector combinations (one for the Fab Lab; two each in Flex spaces A and B) is based on Shanahan’s purchase of these items in the September 2012. Two charging stations that can be used with a variety of devices will be an additional $300. Two ceiling mount brackets total $39

15. What new/recurring costs of your innovative project will continue once the grant has expired? If there are no new/recurring costs, please explain why.

* 0.00% Specific amount of new/recurring cost (annual cost after project is implemented)

This proposal for the Olentangy STEM Center and Fab Lab is intentionally designed to assure long-term financial sustainability through minimal expenditures beyond the first year of the grant. The major expenditures of year one are the purchase of Fab Lab equipment, construction costs to retrofit the space, the cost of furnishings suitable for flexible learning spaces and support from Teaching Fab Team Project Support | TIES Teaching Institute for Excellence in STEM. It is the district’s intention to submit a Straight A Fund grant proposal for the 2015-2016 school year to elaborate on possible extensions of the program beyond year one (i.e., long-term extension of the Fab Lab Center, TIES called the Olentangy STEM Center and Fab Lab, or "OTSCF-L" or Fab Lab 2016 school year beyond year one on the Straight A Fund grant). The building costs of heating, cooling, water, electricity and custodial assistance will be prorated with user fees charged to the non-OLSD students. The costs beyond year one on the Straight A Fund grant. The building costs of heating, cooling, water, electricity and custodial assistance will be prorated with user fees charged to the non-OLSD students. The costs beyond year one on the Straight A Fund grant. The building costs of heating, cooling, water, electricity and custodial assistance will be prorated with user fees charged to the non-OLSD students. The costs beyond year one on the Straight A Fund grant. The building costs of heating, cooling, water, electricity and custodial assistance will be prorated with user fees charged to the non-OLSD students.

16. Are there expected savings that may result from the implementation of the innovative project?

* 258,512.00 Specific amount of expected savings (annual)

* Narrative explanation/rationale: Provide details on the cost items included in the budget (i.e. staff counts and salary/benefits, equipment to be purchased and cost, etc.). If there are no new/recurring costs, please explain why.

The renovation of the existing area within Shahanan to outfit learning spaces for more than 100 students in the STEM center would prevent the necessity for relocation of Olentangy’s alternative high school program relocation can be avoided. Renovation of the existing area within Shanahan to out fit learning spaces for more than 100 students in the STEM center would prevent the necessity for relocation of Olentangy’s alternative high school program relocation can be avoided. Renovation of the existing area within Shanahan to out fit learning spaces for more than 100 students in the STEM center would prevent the necessity for relocation of Olentangy’s alternative high school program relocation can be avoided. Renovation of the existing area within Shanahan to out fit learning spaces for more than 100 students in the STEM center would prevent the necessity for relocation of Olentangy’s alternative high school program relocation can be avoided.

17. Provide a brief explanation of how the project is self-sustaining. If there are ongoing costs associated with the project after the term of the grant, this explanation should provide details on the cost reductions that will be made that are at least equal to the amount of new/recurring costs detailed above. If there are no new/recurring costs, explain in detail how this project will sustain itself beyond the life of the grant.

The Olentangy STEM Center and Fab Lab proposal is self-sustaining project beyond year 1 of the Straight A Fund grant award. There are two factors that ensure this aspect of our proposal. They are:

- The building costs of heating, cooling, water, electricity and custodial assistance will be prorated with user fees charged to the non-OLSD students. The costs beyond year one on the Straight A Fund grant. The building costs of heating, cooling, water, electricity and custodial assistance will be prorated with user fees charged to the non-OLSD students. The costs beyond year one on the Straight A Fund grant. The building costs of heating, cooling, water, electricity and custodial assistance will be prorated with user fees charged to the non-OLSD students. The costs beyond year one on the Straight A Fund grant. The building costs of heating, cooling, water, electricity and custodial assistance will be prorated with user fees charged to the non-OLSD students.
D) IMPLEMENTATION - Timeline, communication and contingency planning

18. Fill in the appropriate dates and an explanation of the timeline for the successful implementation of this project. In each explanation, be sure to briefly describe the largest barriers that could derail your concept or timeline for implementation, and how you plan to proactively mitigate such barriers. In addition, the narrative should list the stakeholders that will be engaged during that stage of the project and describe the communication that occurred as the application was developed.

Describe the ongoing communication plan with the stakeholders as the project is implemented. (Stakeholders can include parents, community leaders, foundation support and businesses, as well as educational personnel in the affected entities.)

* Proposal Timeline Dates
- Plan (MM/DD/YYYY): See figure 6 in attachment.
 * Narrative explanation
 See figure 6 in attachment.

- Implement (MM/DD/YYYY): N/A
 * Narrative explanation
 N/A

- Summative evaluation (MM/DD/YYYY): N/A
 * Narrative explanation
 N/A

19. Describe the expected changes to the instructional and/or organizational practices in your institution.

The Olentangy Local Schools has been Ohio’s fastest growing school district for the past decade. In this period of remarkable growth, resources have been dedicated to building instructional programs that focus on student achievement, and on the construction of traditional school buildings to house nearly 1,000 new students a year. In this project we reach a critical mass of shared understanding and commitment to evaluate current practices and transform them to ready our students for the new realities of college preparation and the workplace. STEM programming will increase students’ engagement with learning through inquiry and relevant problem-based methods; to forge a new sense of community by establishing cooperative relationships with STEM and faculty in post-secondary institutions; and at Shananahan, to focus on better preparation for students high school graduates, the digital world and the workplace. This innovative practice must be grounded within the framework of the deeper learning research that occurs within schools and community members who work in STEM fields to mentor students. Create a STEM program at Shananahan that can be replicated at the district’s other four middle schools and ultimately extended to include new opportunities for high school students. Build ease of scalability into the model so the planning, implementation and summative phases can be helpful to other schools and districts considering STEM. Provide the district of its digital Fab Lab in central Ohio. Outreach efforts have already begun to invite nearby districts to use this resource and to train and collaborate with Olentangy teachers. Build a 7-12 program in Olentangy that feeds into Ohio’s STEM pipeline and connects students to resources and mentors at nearby universities, including The Ohio State University. Connecting high school students to post-secondary opportunities is a critical initiative in OLSD. Retain district teachers who demonstrate a passion for STEM and inquiry teaching. Until this project, these instructional practices have functioned in silos of influence for the benefit only of their immediate colleagues and students. With an opportunity to train five Fab Lab gurus from around the district, a framework will be provided to support expanded use of the Fab Lab over the next five years. Tie-ins to the national and global network of Fab Labs present a host of possibilities to improve practice and global understandings. These five teachers will continue to teach courses but part of their weekly schedules will involve work in the Fab Lab.

E) SUBSTANTIAL IMPACT AND LASTING VALUE - Impact, evaluation and replication

20. Describe the rationale, research or past success that supports the innovative project and its impact on student achievement, spending reduction in the five-year fiscal forecast or utilization of a greater share of resources in the classroom.

STEM isn’t just about making robots - it is a way of viewing and thinking about the world. Marcela Hernandez, the Grad/STEM Diversity Director of the College of Arts and Sciences at The Ohio State University, works to support and retain OSU students, especially females, who select STEM majors. She is a key player in the Shananahan teachers’ personal learning network and has provided essential support as they delve into the voluminous research and literature available on the efficacy of STEM curricula and inquiry learning. She recommends Georgetown University’s Center on Education and the Workforce report titled, “STEM,” as a seminal study that has become part of the theoretical underpinning for our STEM initiative. It is evident that key STEM competencies must be cultivated in students at early stages to increase the number of students and ultimately workers in the STEM pipeline through inquiry learning. The immediate impact of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students. D) IMPLEMENTATION – Timeline, communication and contingency planning. In this project we reach a critical mass of shared understanding and commitment to evaluate current practices and transform them to ready our students for the new realities of college preparation and the workplace.STEM programming will increase students’ engagement with learning through inquiry and relevant problem-based methods; to forge a new sense of community by establishing cooperative relationships with STEM and faculty in post-secondary institutions; and at Shananahan, to focus on better preparation for students high school graduates, the digital world and the workplace. This innovative practice must be grounded within the framework of the deeper learning research that occurs within schools and community members who work in STEM fields to mentor students. Create a STEM program at Shananahan that can be replicated at the district’s other four middle schools and ultimately extended to include new opportunities for high school students. Build ease of scalability into the model so the planning, implementation and summative phases can be helpful to other schools and districts considering STEM. Provide the district of its digital Fab Lab in central Ohio. Outreach efforts have already begun to invite nearby districts to use this resource and to train and collaborate with Olentangy teachers. Build a 7-12 program in Olentangy that feeds into Ohio’s STEM pipeline and connects students to resources and mentors at nearby universities, including The Ohio State University. Connecting high school students to post-secondary opportunities is a critical initiative in OLSD. Retain district teachers who demonstrate a passion for STEM and inquiry teaching. Until this project, these instructional practices have functioned in silos of influence for the benefit only of their immediate colleagues and students. With an opportunity to train five Fab Lab gurus from around the district, a framework will be provided to support expanded use of the Fab Lab over the next five years. Tie-ins to the national and global network of Fab Labs present a host of possibilities to improve practice and global understandings. These five teachers will continue to teach courses but part of their weekly schedules will involve work in the Fab Lab.

21. Is this project able to be replicated in other districts in Ohio?

☐ Yes ☐ No

22. If so, how?

In an important goal of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students. The immediate impact of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students. The immediate impact of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students. The immediate impact of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students. The immediate impact of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students. The immediate impact of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students. The immediate impact of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students. The immediate impact of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students. The immediate impact of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students. The immediate impact of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students. The immediate impact of the Olentangy STEM Center and Fab Lab project is to develop a model that can be replicated in other existing schools who wish to create a STEM option for students.
23. Describe the substantial value and lasting impact that the project hopes to achieve.

This proposal stems from Olentangy Local Schools' vision statement that describes the essential exchange of skills and knowledge at the core of learning as the goal of our efforts and expenditures on behalf of the young people in our community. As stated in the district's Continuous Improvement Plan: The staff will focus on quality classroom practices including a rigorous curriculum, aligned assessments and focused instruction to achieve maximum learning in every environment. Substantial value: In the near-term, enhanced student achievement as measured by state and national standardized tests is expected to rise to meet the benchmarks of ACT's College and Career Readiness in STEM areas. Student engagement and teacher satisfaction surveys will demonstrate improved student engagement with genuine and meaningful learning experiences in partnership with true practitioners of STEM domains; the savings to the 5-year forecast that is outlined in the proposal will allow the district to redistribute funding to purchase STEM curriculum resources and lab equipment to add to existing traditional classrooms and to enhance professional development for teachers in the STEM areas. Lasting impact: Develop the first steps in the STEM pipeline that will begin at the middle school level and expand to opportunities for post-secondary enrollment and beyond. Enhanced cross-district cooperation and rich partnerships with area colleges and private industry will dramatically impact the nature of the educational landscape in north central Ohio and will produce new opportunities for our students. Linkages to state and regional STEM hubs will be established; Fab Lab gurus will work with others to create STEM instructional programs at the regional hub and state level.

24. What are the specific benchmarks related to the fund goals identified in question 9 that the project aims to achieve in five years? Include any other anticipated outcomes of the project that you hope to achieve that may not easily be benchmarked.

The success of the Olentangy STEM Center and Fab Lab program will be evaluated in light of the Straight A Fund's stated goals and additional benchmarks established for Shanahan students and district-wide. Multiple methods will be used to measure both short-term and long-term progress. Annual results will be compiled in a yearly Executive Summary for stakeholders; a report to the Superintendent and the School Board; and made available to the Ohio STEM Link Network. Student achievement Assessment tools: OAA and OGT Goal: Increase percentage of students achieving at proficient, advanced and advanced plus levels by 10% within three years (2016) on Math and Science OAs at the 8th grade level and on the OGT at the 10th grade level. Measure: ACT QualityCore test Goal: Increase number of students achieving ACT's College and Career Readiness benchmarks to at least 50 percent of students in STEM areas. (see fig. 11) Measure: Enrollment figures in high level STEM courses district-wide (three high schools) Goal: Increase the number of students taking high level science, technology and math classes (AP and Honors) over and above state-requirements for graduation. An increase of at least 10% in the raw number of students taking these courses will be reported by 2018. Measure: Self-reported data from colleges that reflect the number of Olentangy high school graduates who declare a STEM major. This measure is problematic because its validity relies on colleges voluntarily reporting to the National Student Clearinghouse. It is hit-or-miss in terms of which colleges participate and which do not. Nevertheless, there are detectible trends (see fig. 12) that demonstrate a low proportion of Olentangy high school graduates are selecting STEM majors (16.4%) when compared to students who select a non-STEM major (83.6%) Goal: Overall, increase the number of OLSD graduates who are reported as selecting a STEM major. Spending reductions in the five-year fiscal forecast Measure: Savings to Olentangy Local Schools' 5-year forecast. Goal: Save the cost of moving OASIS to a comparable space to make room for the Olentangy STEM Center next summer. Projected rental cost for year 1: $37,000. Measure: Savings to Olentangy Local Schools' 5-year forecast. Goal: Save the cost of renovating the original cafeteria space and study hall classroom to become a learning space for 100 students in the Olentangy STEM Center. Savings: $234,700. Measure: Savings to Olentangy Local Schools' 5-year forecast. Goal: Save the cost of furnishings for four classroom spaces which would have been necessary regardless of the launch of the STEM program, due to increased enrollment at Shanahan. Savings: $23,812. Utilization of a greater share of resources in the classroom. Measure: A savings of $258,512 in Olentangy's five-year forecast. Goal: Use savings in the five-year forecast to provide additional 21st century learning environments to existing traditional classrooms, including but not limited to instructional materials, technology, professional development of teachers and lab equipment for STEM curricular areas.

25. Describe the plan to evaluate the impact of the concept, strategy or approaches used.

I Accept the method by which progress toward short- and long-term objectives will be measured. (This section should include the types of data to be collected, the formative outputs and outcomes and the systems in place to track the program's progress).

August-October 2014 FORMATIVE: Finalize the plan for progress monitoring measures that will be used year-long to determine student engagement (pre- and post-program surveys); mastery of skills and content in Common Core State Standards (performance-based assessment, metacognitive reflections, unit tests and projects); and development of personal academic goals (using inventories and instruction based on Habits of Mind) that focus on strengthening academic independence and resilience. Specific instructional supports such as Achieve3000 (to develop nonfiction literacy skills) and Membean or vocabulary.com (to build academic vocabulary) will be used to individualize instruction for learners and to track progress in skill and concept attainment. Spring-Summer of 2015 SUMMATIVE: Develop student and cohort achievement data profiles. Use state and national standardized tests (OAs, ACT QualityCore, Terra Nova) to build a profile of each student enrolled in year 1 of the STEM program to track progress as against past student achievement and College and Career Readiness benchmarks, and for three years hence (school years 2014-2018). Pre-and post-program student engagement, title II and satisfaction surveys will continue, and monitoring of quarterly grades. Growth measures for the individualized instruction programs will be included. Teacher satisfaction surveys will be administered and OTEs data voluntarily collected, when possible, to gain insight into teacher efficacy. Areas of strength and deficit in the program will be identified, isolated and either maintained, improved, overhauled for greater effectiveness, or discarded based on the summative data. Student attendance trends will be tracked for years 1 - 4 of the program (2014-2018 academic years) to supplement analysis of student engagement with learning. Determine increased inter-connectedness of school community and strength of relationships with other educational institutions. The calendar of activities hosted in the Fab Lab will be classified by school, STEM area, nature of activity, interaction with Fab Lab gurus, and a satisfaction survey reflecting the services offered by the Lab. The Fab Lab would be a costly but abundantly useful resource for Kindergarten through college teachers and students throughout the north-central region of Ohio. If the Fab Lab is easy to access and offers sound instructional programs, it is a cost savings and instructional benefit for the entire educational community in the region. In addition, a growing list of volunteer mentors from Olentangy families, local post-secondary institutions and private industry will be assessed as this is a critical part of a successful STEM program. Focus groups consisting of STEM program stakeholders will be held during the planning phase (January of 2014) and again in January 2015 so feedback can be gathered. This timing of the second focus group will allow for immediate program changes if necessary. Summative reports will be consolidated into an Executive Summary for presentation to Olentangy's district leadership team, School Board and made available to other organizations in the Ohio STEM Link Network and as a benefit to other districts that work to develop a STEM programming. This system of data collection, analysis, adjustments to curriculum and other STEM program components, and public reporting will continue for the following school years: 2015-2016, 2016-2017; and 2017-2018. Collection of testing data will continue as students in the year 1 cohort will remain a test group through 12th grade. New students in the STEM program will also be tracked as individuals and a cohort through 12th grade to gain insight into the program's impact. OAA and ACT Quality Core subjects will be included and monitored, along with STEM course selection in high school and the declaration of a major in college.

By virtue of applying for the Straight A Fund, all applicants agree to participate in the overall evaluation of the Straight A Fund for the duration of the evaluation timeframe. The Governing Board of the Straight A Fund reserves the right to conduct evaluation of the plan and request additional information in the form of data, surveys, interviews, focus groups, and any other related data to the legislature, governor, and other interested parties for an overall evaluation of the Straight A Fund.

PROGRAM ASSURANCES: I agree, on behalf of this applicant agency and/or all identified partners to abide by all assurances outlined in the Assurance section of the CCIP. In the box below, enter "I Accept" and indicate your name, title, agency/organization and today's date.

Accept Jack Fette, Curriculum Director, Olentangy Local Schools, 10/25/2013