<table>
<thead>
<tr>
<th>Purpose Code</th>
<th>Object Code</th>
<th>Salaries 100</th>
<th>Retirement Fringe Benefits 200</th>
<th>Purchased Services 400</th>
<th>Supplies 500</th>
<th>Capital Outlay 600</th>
<th>Other 800</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>300,000.00</td>
<td>195,000.00</td>
<td>4,976,000.00</td>
<td>0.00</td>
<td>5,471,000.00</td>
</tr>
<tr>
<td>Support Services</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Governance/Admin</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>369,322.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>369,322.00</td>
</tr>
<tr>
<td>Prof Development</td>
<td></td>
<td>45,500.00</td>
<td>7,280.00</td>
<td>9,856.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>62,636.00</td>
</tr>
<tr>
<td>Family/Community</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Facilities</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>45,500.00</td>
<td>7,280.00</td>
<td>679,178.00</td>
<td>195,000.00</td>
<td>4,976,000.00</td>
<td>0.00</td>
<td>5,902,958.00</td>
</tr>
</tbody>
</table>

Adjusted Allocation 0.00
Remaining -5,902,958.00
Please respond to the prompts or questions in the areas listed below in a narrative form.

A) APPLICANT INFORMATION - General Information

1. Project Title:
 21st Century Classroom Technology Initiative (21CCTI)

2. Executive summary: Please limit your responses to no more than three sentences.
 21CCTI, a comprehensive technology project will increase student achievement, create spending reductions in the 5 year fiscal forecast, and result in the utilization of a greater share of resources in the classroom. These goals will be achieved through the implementation of a number of technology, infrastructure, and innovative instructional practices. The components of this project are: 1:1 6th-8th, Increased Technology 3rd-5th, Middle School STEM Equipment, 21st Century Professional Development (PD), Fiber Optic Networking, Virtual Desktop Infrastructure (VDI), and Expanded Bring Your Own Device (BYOD).

 This is an ultra-concise description of the overall project. It should not include anything other than a brief description of the project and the goals it hopes to achieve.

4407 3. Total Students Impacted:
 This is the number of students that will be directly impacted by implementation of the project. This does not include students that may be impacted if the project is replicated or scaled up in the future.

4. Please indicate which of the following grade levels will be impacted:

 - Pre-K
 - Special Education
 - Kindergarten
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 11
 - 12

5. Lead applicant primary contact: - Provide the following information:
 First Name, last Name of contact for lead applicant
 Martin White

 Organizational name of lead applicant
 Findlay City Schools

 Address of lead applicant
 1100 Broad Avenue, Findlay, Ohio 45840

 Phone Number of lead applicant
 419-425-8227

 Email Address of lead applicant
 mwhite@fcs.org

6. Are you submitting your application as a consortium? - Select one checkbox below
 - Yes
 - No

 If you are applying as consortium, please list all consortium members by name on the "Consortium Member" page by clicking on the link below. If an educational service center is applying as the lead applicant for a consortium, the first consortium member entered must be a client district of the educational service center.

 Add Consortium Members

7. Are you partnering with anyone to plan, implement, or evaluate your project? - Select one checkbox below
B) PROJECT DESCRIPTION - Overall description of project and alignment with goals

8. Describe the innovative project: - Provide the following information

The response should provide a clear and concise description of the project and its major components. Later questions will address specific outcomes and the measures of success.

The current state or problem to be solved; and

Currently, schools are overly reliant on traditional instructional methodology such as lecture, textbooks and rote exercises and under-utilizes classroom technology. 21CCTI is a fundamental shift of instructional models with the goal of accelerating learning, preparing students for the new generation of on-line assessments, and preparing students for college and/or 21st Century careers. The goal of 21CCTI is to fully incorporate instructional technology into the classroom and structure of the system to improve student achievement and utilize a greater share of resources in the classroom. Unless we can increase financial resources through a reduction in infrastructure costs (i.e. fiber optics, BYOD, virtual desktop), providing 21st Century instructional technology would not be possible. Furthermore, members of the consortium; Findlay City Schools (FCS), Van Buren (VB) and Blanchard Valley Schools (BVS) lack the personnel and financial resources to provide a wider variety of courses to their students.

The proposed innovation and how it relates to solving the problem or improving on the current state.

8th-Grade 1:1 Technology: FCS students lack ample access to technology both at school and home. 1:1 gives FCS students a mobile device to use in classes and at home to further their learning opportunities. Increase technology access at the 3rd-5th level: 3rd-5th FCS students have minimal access to technology in individual classrooms. Technology resources have to be shared and it is often difficult to meet the instructional plans of the teachers. Laptop carts and/or classroom sets of iPads will be purchased to ensure adequate access in every 3rd-5th classroom. Increasing technology access at the 3rd-5th level will better prepare students for the 1:1 access at the middle school, allow practice with technology skills needed to be successful on the new assessments, and allow for models of blended learning at a younger age.

Blended Learning Model (BLM) 3rd-12th: Few FCS teachers are utilizing BLM. Blended learning is flexible and comes in many shapes and sizes. 21CCTI allows 3rd-12th students to experience multiple modes of instruction. In grades 3rd-5th blended learning will include station rotation and the flipped classroom will be implemented in grades 6-8. Flipped classrooms will allow students 6th-8th the benefit of content delivery primarily online with support, practice and deepening of understanding done on classroom time. Using a Learning Management System (LMS) will allow consortium schools to expand their course offerings through shared resources and purchasing academic programs. Some courses will use the flex and self-blend models where content and instruction are delivered primarily through the Internet. This method will allow a teacher to provide instruction to multiple sections/courses beyond a standard teaching load. Middle School STEM Equipment for Science Classrooms: FCS is working to increase the STEM concepts beginning with our middle school instruction. We lack the resources and equipment to provide a hands-on inquiry based approach to fully understand scientific concepts and to analyze real data. Professional Development (PD): Providing just technology and equipment would be insufficient to meet the goal of increasing student achievement without also providing high quality PD. 3rd-12th grade teachers will receive job embedded PD to increase their skills in 21st Century technology relevant to each component of the grant. Additionally, we will provide a 21st Century Academy in June of 2015 with a focus on blended learning, flipped classrooms and integration of technology in the classroom. In order to redirect monies into the aforementioned classroom technology initiatives, FCS will need to significantly reduce the cost of leased technology infrastructure. This will be accomplished through the following: Fiber Optic Network: The district will install FCS owned private fiber optic cable to all buildings resulting in a $9100 per month savings. This would give the greatest amount of flexibility by providing the fastest and most reliable data network to all classrooms and allow us to redirect the savings to our 21CCTI. By including the fiber optic connection to VB and BVS this project will eliminate their leasing costs for fiber optics and allow each to redirect saving back into classroom instruction and/or district initiatives. Virtual Desktop Infrastructure (VDI): To reduce the cost of technology infrastructure the district shall implement a VDI. This infrastructure consists of server/thin client model replacing standard desktop structure and will provide cost savings over time, allowing savings to be redirected toward classroom components of 21CCTI. Expanded Bring Your Own Device (BYOD): Currently FCS spends significant time and funds to support the classroom teacher by providing and maintaining teacher laptops. With full implementation of a VDI the district can move to an expanded BYOD process, allowing teachers to purchase a laptop of their choosing every 6 years, reducing service, maintenance, and personnel costs.

9. Which of the stated Straight A Fund goals does the proposal aim to achieve? - (Check all that apply)

Applicants should select any and all goals the proposal aims to achieve. The description of how the goals will be met should provide the reader with a clear understanding of what the project will look like when implemented, with a clear connection between the components of the project and the stated goals of the fund. If partnerships/consortia are part of the project, this section should describe briefly how the various entities will work together in the project. More detailed descriptions of the roles and activities will be addressed in Question 16.

- Student achievement (Describe the specific changes in student achievement you anticipate as a result of this innovation (include grade levels, content areas as appropriate) in the box below.)

1:1 access has been shown to improve student achievement. 1:1 computing initiatives point to improvement in student attendance, engagement, academic rigor, individualized instruction, and adequate yearly progress (AYP) goals. The 1:1 6th-8th component gives FCS students a mobile device to use in classes and at home to further their learning opportunities. The grant will provide all FCS 6th grade students with a mobile device for the 14-15 school year. The device will be theirs to utilize throughout their 6-8th grade years. Students will have the option to purchase the device at the end of their middle school years. Subsequent years will be funded by savings accrued thru the fiber optic, VDI and BYOD components of the grant. PARCC and next generation assessments will require students to be skilled in the use of technology. Having increased access to technology in the classroom, will better prepare FCS 3rd-5th grade students for these assessments.
The grant will provide all FCS 3rd through 5th grade classrooms with laptop carts and/or tablet devices. Research suggests that blended learning opportunities have a meaningful impact on students' academic achievement and retention. Blended learning activities can be more advantageous than face-to-face learning by providing more consistent learning. Students also report preferring the blended learning approach as classroom time was reduced. Studies of blended learning approaches have also shown that various models have proven to reduce faculty time, re-focus student time and to admit more students to a given academic program. The consortium schools will partner with UF to provide access to their Blackboard LMS. This will allow expanded course offerings for FCS, VB and BVS students and the sharing of instructional resources. BLM will provide students direct access to college level courses at UF under either post secondary options or dual enrollment. The investment FCS middle school lab and technology (STEM) equipment will improve student engagement both in the classroom and at home through hands-on inquiry based learning, flipping the classroom, real life research and problem solving, etc.

Increased student engagement and ownership of the learning has been proven to increase student achievement. Increased scores on the 8th OAA and eventually next generation assessments will result from the integration of the equipment into classroom instruction. The grant will provide state of the art STEM equipment including Vernier Probes, LEGO kits, weather stations, digital scales, microscopes with cameras, document cameras, SMART Centeio Systems, and teleconference equipment. Research indicates that increased access to classroom technology aligned with high quality PD results in improved student achievement that would be beyond implementation of one or the other alone. PD will be necessary in order to implement each component of the grant with fidelity. On going, job embedded PD will be provided in the areas related to effective instructional strategies incorporating technology, STEM practices and equipment, BLM, and BYOD. In addition, a summer 21st Century Academy will provide more in-depth training in 21st Century learning and instruction in order to expand teacher instructional skills and ensure a more effective and wide spread use of technology in the classrooms. The 21st Century Academy will be offered to FCS, VB, and BVS teachers.

Spending reductions in the five-year fiscal forecast or positive performance on other approved fiscal measures (Describe the specific reductions you anticipate in terms of dollars and spending categories over a five-year period in the box below or the positive performance you will achieve on other approved fiscal measures. Other approved fiscal measures include a reduction in spending over a five-year period in the operating budget approved by your organization's executive board or its equivalent.)

A significant reduction in spending will occur through the grant components of Fiber Optics, VDI, BYOD and BLM. Savings recovered from these aspects will be redirected to support one of the following: offices, support staff, or on-going implementation of classroom technology components in the grant. Fiber Optics FCS will install privately owned dark fiber to interconnect FCS schools and BVS. Having privately owned fiber removes the need to lease fiber from a provider such as ATT or Time Warner. Completion of the fiber optics project allows FCS the savings of $109,200 a year and BVS $9,600 a year. The installation of privately owned fiber allows FCS VDI The current revolution in informational technology is the replacement distributed computing with centralized processing in a model similar to mainframe, but delivered over a virtualized desktop infrastructure. Implementation of the VDI grant component is the replacement of standard desktop equipment with thin client stations in all FCS classrooms and labs 3rd-12th. The VDI project will result in significant savings in electrical costs by reducing our electrical usage by 577kWh. The calculation of electrical savings through VDI is as follows: 577kWh x 0.06 cents per kWh x 8 hours per day x 270 days = $74,779/year. Additionally, VDI results in a $340,000/year reduction of annual equipment replacement costs. The VDI component creates a yearly savings of $414,779. BYOD Currently FCS provides teachers and administrators with a new laptop every six years. Under BYOD, teachers and administrators will instead, be provided a stipend to purchase a mobile device/equipment of their own choosing based on recommendations of the IT department. Vendors of choice, rather than FCS IT staff will provide maintenance for the purchased equipment. BYOD is currently available to FCS students. Expanding BYOD to teachers and administrators allows for the reduction of technology support staff resulting in a savings of approximately $73,000 a year. BLM BLM and courses offered on line will result in savings for the district in that at least one Full Time Equivalent (FTE) could be eliminated at FCS saving $73,000/year. BLM more effectively meets the demands of under served students by allowing additional course offerings where there would normally be a small number of students and limited availability of staff to teach the course. The consortium schools will collaborate on course offerings and share teacher personnel for the online courses. With implementation of all components, we estimate a reduction in overall expenditures in the five-year forecast to be $1,162,969 per year, with a total over five years of $5,814,845.

Utilization of a greater share of resources in the classroom (Describe specific resources (Personnel, Time, Course offerings, etc.) that will be enhanced in the classroom as a result of this innovation in the box below.)

Utilization of a greater share of financial resources in the classroom will result through implementation of 21CCTI. Savings realized from the various grant components previously described, will be redirected into classrooms. Enhanced learning through the components of 1:1, increased 3rd-5th technology, and BLM, middle school STEM equipment can only be initiated and sustained through the savings generated by the other components of this grant. The PD components of the grant will enhance the technology and teaching skills of the consortium teachers. As a result of the BLM, secondary course offerings and PSEO and dual enrollment opportunities will be enhanced for students of consortium schools. Increased opportunities for students will lead to more effective and flexible scheduling and reduce time in non-instructional periods and increase student satisfaction in taking courses they actually desire. In addition, teaching opportunities will be expanded through BLM when teachers begin to teach courses they previously were not available to teach and/or when they team with another teacher on a course. As a result of the consortium student population pool, teachers may have opportunities to instruct courses that previously did not have sufficient enrollment. Components of the 21st Century Classroom Technology Initiative will increase equity for FCS students by providing technology and resources without regard to socio-economic status and home access. The components of 1:1 6th-8th and Increasing Technology 3rd-5th helps bridge the gap of socio-economic status by providing access to quality 21st Century equipment and software to all students, including those who would not normally be afforded the resources and experiences. Additionally, the virtual desktop environment ensures universal access to the same software for all students regardless of socio-economic status.

Implementing a shared services delivery model (Describe how your shared services delivery model will demonstrate increased efficiency and effectiveness, long-term sustainability, and scalability in the box below.)

The BLM component is a shared service delivery model in that the University of Findlay, through their Blackboard LMS, will provide the expanded learning opportunities to the consortium member schools. The Blackboard LMS used by UF has been in place for a number of years. The expertise and experience they bring to the table will make the consortium's BLM much more efficient and effective. Their staff can provide the PD necessary (instructional systems design, implementation of the Quality Matters rubric, etc.) for a smooth transition to this component of the grant. Increased efficiency and effectiveness will also result from the sharing of teaching resources across the consortium allowing for expanded teaching and learning opportunities. UF's multi-year experience in using Blackboard with a large student population will guarantee long-term sustainability at the level needed for a highly successful program.
10. Which of the following best describes the proposed project? - (Select one)

- New - never before implemented
- Existing: Never implemented in your community school or school district but proven successful in other educational environments
- Mixed Concept: Incorporates new and existing elements
- Established: Elevating or expanding an effective program that is already implemented in your district, school or consortium partnership

C) SUSTAINABILITY - Planning for ongoing funding of the project, cost breakdown

11. Financial Documentation: - All applicants must enter or upload the following supporting information. The information in these documents must correspond to your responses in questions 11-14.

* Enter a project budget in CCIP (by clicking the link below)
* If applicable, upload the Consortium Budget Worksheet (by clicking the link below)
* Upload the Financial Impact Table (by clicking the link below)
* Upload the Supplemental Financial Reporting Metrics (by clicking the link below)

For applicants without an ODE Report Card for 2012-2013, provide a brief narrative explanation of the impact of your grant project on per pupil expenditures or why this metric does not apply to your grant project instead of uploading the Supplemental Financial Reporting Metric.

The project budget is entered directly in CCIP. For consortia, this project budget must reflect the information provided by the applicant in the Consortium Budget Worksheet. Directions for the Financial Impact Table are located on the first tab. Applicants must submit one Financial Impact Table with each application. For consortium applications, each consortium member must add an additional tab on the Financial Impact Tables. Partners are not required to submit a Financial Impact Table.

Applicants with an "Ohio School Report Card" for the 2012-2013 school year must upload the Supplemental Financial Reporting Metrics to provide additional information about cost savings and sustainability. Directions for the Supplemental Financial Reporting Metrics are located on the first tab of the document. If your organization does not have an "Ohio School Report Card" for the 2012-2013 school year, please provide an explanation in the text box about how your grant project will impact expenditures per pupil or why expenditure per pupil data does not apply to your grant project.

Educational service centers, county boards of developmental disabilities, and institutions of higher education seeking to achieve positive performance on other approved fiscal measures should submit the budget information approved by an executive board or its equivalent on the appropriate tabs of the Financial Impact Table. Educational service centers should use the "ESC" tab and county boards of developmental disabilities and institutions of higher education should use the "non-traditional" tab.

12. What is the total cost for implementing the innovative project?

Responses should provide rationale and evidence for each of the budget items and associated costs outlined in the project budget. In no case should the total projected expenses in the budget narrative exceed the total project costs in the budget grid.

5,963,648.00 State the total project cost.

* Provide a brief narrative explanation of the overall budget.

The total cost of 21CCTI is $5,963,648. FCS has committed $370,000 toward VDI, therefore FCS is requesting the grant funds in the amount of $5,593,648. - 1:1 Technology 6th thru 8th- 1300 students x $800/mobile device = $1,040,000 (instructional capital outlay) - Increased Access 3rd thru 5th- 36 classroom sets of 25 mobile devices x $800/device and cart @$2,000/cart = $792,000 (instructional capital outlay) - BLM/deferred management system initial up cost- Blackboard, Desire2learn, or Educause= $350,000 (instructional purchased services) - Middle School Science Equipment- all equipment divided between two middle school buildings and 6 science classrooms per building = $195,300 (instructional supplies) - Vernier Probes- $85,000 - Lego Kits- $10,800 - Weather Stations- $3,500 - Digital Scales- $20,000 - Microscopes with cameras- $30,000 - Document Cameras- $13,000 - SMART Center System- $23,000 - Teleconference Equipment- $10,000 - Professional Development- $116,416 - 21st Century Academy- $101,416 55 participants @ $812/person (PD salaries and fringes) 1 facilitator @$2,900 (PD salaries and fringes) 56 participants 1 day e tech conference @$176/person (PD purchased services) 1 mobile device per participant @ $44,000 (instructional capital outlay) - Middle School Science- $15,000 9 participants @ $580/person (PD salaries and fringes) vendor facilitated PD $9,780 (PD purchased services) - Fiber Optics Cable and Installation- 144 strand fiber optic cable, permits, labor, etc.- $2,000,000 (instructional capital outlay) - This is the estimated total cost of the fiber optic project. While we have tentatively placed this total amount in capital outlay, we recognize that a portion of this total will need to be reallocated to purchased services, based on final design. Since this component requires significant planning the expenditures cannot be accurately budgeted prior to grant allocations being available to move forward. - Virtual Desktop Infrastructure- $1,100,000 of which FCS has committed $370,000= $730,000 requested from grant (instructional capital outlay) - Servers- $385,640 - Software- $370,000 (FCS commitment) - Switching and Storage Equipment- $344,360 - Grant administration (GA) - $100,000 (governance/admin purchased service) - BGSU Center for Assessment and Evaluation Services (External Evaluator) - $269,932 (governance/admin purchased service)
13. Will there be any costs incurred as a result of maintaining and sustaining the project after June 30th of your grant year?

Sustainability costs include any ongoing spending related to the grant project after June 30th of your grant year. Examples of sustainability costs include annual professional development, equipment maintenance, and software license agreements. To every extent possible, rationale for the specific amounts given should be outlined. The costs outlined in the narrative section should be consistent and verified by the financial documentation submitted and explained in the Financial Impact Table. If the project does not have sustainability costs, applicants should explain why.

Yes - If yes, provide a narrative explanation of your sustainability costs as detailed in the Financial Impact Table in the box below.

<table>
<thead>
<tr>
<th>Total Yearly Recurring Costs</th>
<th>$725,250 - 1:1 6th thru 8th grade</th>
<th>$800/device x 440 students= $352,000/year - LMS maintenance- $300,000/year - Fiber optic network maintenance- anticipated $10,000/year -- VDI licensing- $13,250/year - Professional Development- $50,000/year</th>
</tr>
</thead>
</table>

No - If no, please explain why (i.e. maintenance plan included in purchase price of equipment) in the box below.

14. Will there be any expected savings as a result of implementing the project?

Yes

No

Applicants with sustainability costs in question 13 or seeking to achieve significant advancement in spending reductions in the five-year forecast must address this response. Expected savings should match the information provided by the applicant in the Financial Impact Table. All spending reductions must be verifiable, permanent, and credible. Applicants may only respond "No" if the project will not incur any increased costs as a result of maintaining and sustaining the project after June 30th of your grant year. The Governing Board will use the cost savings as a tiebreaker between applications with similar scores during its final selection process. Cost savings will be calculated as the amount of expected cost savings less sustainability costs relative to the project budget.

753,179.00 If yes, specify the amount of annual expected savings. If no, enter 0.

If yes, provide details on the expected savings (i.e. staff counts and salary/benefits, equipment to be purchased and cost, etc.). If no, please explain.

FCS Savings Totaling upon full implementation of grant $742,979.00: - Reduce two FTE through BLM- $146,000/year (FY16 and FY17) - VDI (not replacing equipment yearly)- $340,000/year - VDI 577KWh x .06 cents per kWh x 8 hours per day x 270 days = $74,779/year - Reduction of IT personnel (through Expanded BYOD and VDI)- $73,000/yearly (FY16) - Fiber Optics savings in AT&T lease cost- $9,100 per month x 12 months = $109,200/year Savings for Blanchard Valley School: - Fiber Optics savings in Time Warner lease cost- $850 per month x 12 months = $10,200/year

15. Provide a brief explanation of how the project is self-sustaining.

All Straight A Fund grant projects must be expenditure neutral. For applications with increased ongoing spending as documented in question 11-14, this spending must be offset by expected savings or reallocation of existing resources. These spending reductions must be verifiable, permanent, and credible. This information must match the information provided in your Financial Impact Table. Projected additional income may not be used to offset increased ongoing spending because additional income is not allowed by statute. Please consider inflationary costs like salaries and maintenance fees when considering whether increased ongoing spending has been offset for at least five years after June 30th of your grant year. For applications without increased ongoing spending as documented in questions 11-14, please demonstrate how you can sustain the project without incurring any increased ongoing costs.

For educational service centers and county boards of developmental disabilities that are members of a consortium, any increased ongoing spending at the educational service center or county board of developmental disabilities may also be offset with the verifiable, permanent, and credible spending reductions of other members of the consortium. This increased ongoing spending must be less than or equal to the sum of the spending reductions for the entire consortium.

Explain in detail how this project will sustain itself for at least five years after June 30th of your grant year.

The ongoing costs 21CCTI include purchasing of 1:1 equipment for students each year as they enter 6th grade. Some of the recurring cost will be offset by 8th grade students purchasing the (used) technology as they leave middle school. The BYOD has no recurring cost. BLM will result in a yearly maintenance cost of $300,000/per year. There is a savings with BLM implementation in that we will reduce the overall FTE by at least two, resulting in a net savings of approximately $146,000/year. VDI will result in an annual licensing fee of $13,250/year. There is significant savings, however, in electricity costs, of $74,779/year and equipment replacement costs of $340,000/year. With the implementation of VDI and BYOD, a reduction of IT support personnel of one FTE is possible, which results in a yearly savings of $73,000. The annual cost for maintaining the fiber optics network is anticipated at approximately $10,000. However, the Fiber Optics project will save FCS $109,200/year in leasing costs by owning the fiber network instead of leasing it through AT&T beginning in FY16. The total new/recurring expenses of this project total $725,250. While VDI and Fiber Optics are self-sustaining, provided we receive funds to begin implementation, the other recurring expenses of 1:1 and BLM are only sustainable with the savings generated by the Fiber Optic Network. The total annual savings upon full implementation for FCS is $742,979. In addition, BVS saves $10,200/year for a total savings of $753,179. The total recurring expenses for FCS are $725,250. Therefore, the consortium has a net savings of $17,929/year starting FY18.

D) IMPLEMENTATION - Timeline, scope of work and contingency planning

16. Please provide a brief description of the team or individuals responsible for the implementation of this project, including other consortium members and/or partners.
This response should include a list of qualifications for the applicant and others associated with the grant. If the application is for a consortium or a partnership, the lead should provide information on its ability to manage the grant in an effective and efficient manner. Include the partner/consortium members’ qualifications, skills and experience with innovative project implementation and projects of similar scope.

Enter Implementation Team information by clicking the link below:

Add Implementation Team

For Questions 17-19 please describe each phase of your project, including its timeline, scope of work, and anticipated barriers to success.

A complete response to these questions will demonstrate specific awareness of the context in which the project will be implemented, the major barriers that need to be overcome and the time it will take to implement the project with fidelity. A strong plan for implementing, communicating and coordinating the project should be outlined, including coordination and communication in and amongst members of the consortium or partnership (if applicable). It is recognized that specific action steps may not be included, but the outline of the major implementation steps should demonstrate a thoughtful plan for achieving the goals of the project. The time line should reflect significant and important milestones in an appropriate and reasonable time frame.

17. Planning - Activities prior to the grant implementation

<table>
<thead>
<tr>
<th>Date Range</th>
<th>8/1/2014- 3/1/2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>* List of scope of work (activities and/or events including project evaluation discussions, communication and coordination among entities).</td>
<td></td>
</tr>
</tbody>
</table>

**VDI purchase equipment from DMC of Toledo, Ohio Fiber Optics secure partnerships w/ Hanson Communications and stakeholders design cable installation negotiate right of way secure permits from the city secure installers purchase fiber MS Science Equipment determine equipment needs solicit pricing and quotes purchase equipment provide teachers with PD 1:1 6th-8th determine devices and number of devices to purchased solicit pricing and quotes purchase equipment create image/install software and setup devices distribute devices to 6th students 3rd-5th increased technology determine devices and number to be purchased solicit pricing and quotes purchase equipment create image/install software and setup devices distribute devices to 3-5th classrooms BLM FCS will collaborate w/ UF, VBS and BVS to: determine courses to be provided through Blackboard LMS determine if courses are synchronous or asynchronous and lab sites as needed conduct PD for instructors of courses in use of LMS, instructional systems design, and quality matters register students for courses PD FCS will collaborate w/ VBS and BVS to: solicit input from principals and teachers on 21st century training needs create application for teachers to attend 21st Century Academy determine selection criteria and criteria for selection selection of teachers to attend solicit and secure trainers determine location and dates for PD Expanded BYOD IT plan for increased infrastructure support for VDI/persistent drives develop implementation policy in collaboration w/ bargaining units board approval of policy IT develop recommendations for equipment purchases provide PD for administrators and staff in the use of VDI GA and IM collaborate w/ BGSU and consortium members to determine responsibilities of the GA, IM, and consortium members secure quote and contract with BGSU for GA and IM services determine benchmarks and milestones |

Anticipated barriers to successful completion of the planning phase

VDI no anticipated barriers Fiber Optics - timeline for design and permitting MS Science Equipment - time available for comprehensive PD prior to implementation 1:1 6th-8th potential resistance from teachers due to changes in teaching/instruction expectations - time and enough IT staff to prepare and distribute devices 3rd-5th Increased Technology - time and enough IT staff to prepare and distribute devices - potential teacher resistance due to changes in classroom and instruction expectations BLM - potential teacher resistance due to changes in classroom and instruction expectations and/or loss of teaching positions - potential class time scheduling conflicts with consortium schools - resources/time/personnel to support teachers and students with LMS PD - securing qualified trainers to match the identified PD needs - potential too few 21st Century Academy slots available to meet the interest of teachers applying to participate

18. Implementation - Process to achieve project goals

<table>
<thead>
<tr>
<th>Date Range</th>
<th>July 2014 - September 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>* List of scope of work (activities and/or events, including deliverables, project milestones, interim measurements, communication, and coordination).</td>
<td></td>
</tr>
</tbody>
</table>

**1:1 6th-8th Equipment purchased and delivered - Notification and distribution of devices - On-going technology integration PD for teachers - On-going tech support as needed - Increase Technology 3rd-5th - Purchase hardware and deliver to buildings - Communication of courses to be offered to students and parents - On-going PD surrounding Instructional Systems Design and Quality Matters - Course development of on-line courses - Provide 21st Century PD for flipping classrooms Middle School STEM Equipment - Equipment purchased and delivered to middle schools - On-going PD on how to use the equipment - Integration of equipment into lesson planning PD - Conduct 21st Century Academy each summer beginning in 2015 - Fiber Optics - Purchase all necessary equipment and cable - Install fiber optic cable according to engineering design - Coordinate with BVS the location of Demarc VDI - Purchasing supplemental equipment - Setup images for all devices - Test all devices for proper functioning - Manage bandwidth priority BYOD - Distribute criteria for purchasing personal mobile devices - Coordinate stipends with Treasurer's office - Manage network access controls - As current FCS teacher/administrator laptops fail, IT staff collects FCS owned devices - Teachers purchase own devices according to established criteria |

Anticipated barriers to successful completion of the implementation phase.

1:1 6th-8th - Time needed for IT staff to prepare devices for distribution - Time needed for thorough teacher PD Increase Technology 3rd-5th - Time needed for IT staff to prepare devices for distribution - BLM - PD completed in a timely manner for staff and students to use the LMS - Demand for courses may exceed initial capacity Middle School STEM Equipment - Time for IT staff and maintenance staff to prepare for distribution of equipment PD - Managing the possible high demand for this PD Fiber Optics - Managing installation coordination with City of Findlay, power company and school administrators VDI - Time required for IT staff to complete the installation - Bandwidth priority - Potential resistance due to the perceived change in teaching environment BYOD - Possible teacher resistance to the change from current practice |

* Anticipated barriers to successful completion of the summative evaluation phase.

The main barriers for completing the summative evaluation are the number of participating districts and grade levels. Each district will designate an evaluation coordinator to better facilitate the process of data collection. CAES staff will attend all core grant meetings and complete regular phone meetings with grant administrator (GA) to streamline communication and collaboration process.

20. Describe the expected changes to the instructional and/or organizational practices in your institution.

* The response should illustrate the critical instructional and/or organizational changes that will result from implementation of the grant and the impact of these changes. These changes can include permanent changes to current district processes, new processes that will be incorporated or the removal of redundant or duplicative processes. The response may also outline the expected change in behaviors of individuals (changes to classroom practice, collaboration across district boundaries, changes to a typical work day for specific staff members, etc.). The expected changes should be realistic and significant in moving the institution forward.

Please enter your response below:

With expanded integration and availability of technology in classrooms, we anticipate teachers incorporating and teaching 21st century technology skills at a higher rate than previously possible. With the BLM/online courses at FHS, Van Buren HS, and Blanchard Valley Schools we expect to increase the availability of course offerings and expanded opportunities for learning. Instructional practices will shift from traditional to a more hands-on, inquiry-based, problem-solving classroom environment. As a result, more engaged learning will occur at all levels and lead to an increase in student achievement. By increasing the technology in the elementary and by going 1:1 at the middle schools, the equity of access to technology will be mitigated. Students will be better prepared to take the online PARRC and end-of-course assessments and more successful in 21st century careers and workplace. Teachers will be better able to gather and analyze data to differentiate instructional practices to meet the learning needs of all students and create instructional pathways aligned to individual student goals. Organizational Practices: BLM environments will create more and better opportunities for teacher collaboration, within and between school districts and enable differentiated staffing and boost meaningful professional development opportunities for all of the consortia participants. As we convert to the VDI, FCS will no longer have to replace desktop computers every five years, saving not only capital expenditures, but the human capital that this process requires. Expanded BYOD will free IT staff to focus on development of tutorials and PD for faculty staff and students rather than spending time on break/fix. The fiber optics project allows the greatest amount of flexibility for the delivery of data and communications across the consortium.

E) SUBSTANTIAL IMPACT AND LASTING VALUE - Impact, evaluation and replication

The responses in this section are focused on the ability to design a method for evaluating the project's capacity for long-term sustainable results. Therefore, the questions focus on the method of defining the problem(s) the project hopes to solve and the measures that will determine if the problem(s) have been solved.

21. Describe the rationale, research or past success that supports the innovative project and its impact on student achievement, spending reduction in the five-year fiscal forecast or utilization of a greater share of resources in the classroom.

* The response should provide a concise explanation of items which provide rationale that will support the probability of successfully achieving the goals of the project. Answers may differ based on the various levels of development that are possible. If the proposal is for a new, never before implemented project, the response should provide logical, coherent explanations of the anticipated results based on some past experience or rationale. For projects that have been implemented on a smaller scale or successfully in other organizations, the response should provide the quantifiable results of the other projects. If available, relevant research in support of this particular proposal should also be included.

Please enter your response below.

(see uploaded research bibliography) 1:1 Technology 6-8 and Increased Access 3-5: Research shows that 1:1 programs lead to an improved teaching and learning environment, increased student engagement, and contribute to creativity and innovation. 95% of teachers agree that classroom technology helps their students learn. Several studies of school systems implementing 1:1 have shown gains in student achievement (see details in attached bibliography of research). BLM There are numerous examples of schools and districts that have experienced success with implementation of BLM. Research shows that the benefits of BLM include the ability to provide more enriched learning experiences, extend learning beyond the school day, support differentiated strategies that personalize students' education and learning, and increase student achievement. Additionally, researchers have discovered that the blended learning model may increase capacity for instruction, without necessarily increasing budget or staff, and has the potential to actually reduce costs. According to the 2009 report from the US Department of Education, studies have shown that blends of online learning and face-to-face instruction have been more effective than the conventional face-to-face classrooms. "Students who took all or part of their classes online, perform better, on average than those taking the same course through traditional face-to-face instruction." The flipped classroom model brings about a distinctive shift in priorities from merely covering material to working toward mastery of it, resulting in greater student achievement. Science Equipment The purchase of additional science equipment for the middle schools will lead to implementation of inquiry-based instruction, which provides
numerous benefits to students. Research demonstrates the benefits are: increased critical thinking skills, transfer of concepts to new problem questions, self-directed learning skills, the development of student ownership of their inquiry, and enhanced student interest in the subject matter. High Quality PD in education, research has shown that teaching quality and school leadership are the most important in factors in raising student achievement. PD is the only strategy school systems have to strengthen educators’ performance levels. PD is also the only way teachers can learn so they are able to better their performance and raise student achievement. Professional development is crucial to implementation of any computing initiative. PD is the link between the design and implementation of education reforms and the ultimate success of reform efforts in schools. In order for teachers to grow professionally and modify their instruction, they need to engage in adequate formal PD. Formal PD is essential for teacher learning to affect practice. Fiber Optics The summary of research on fiber optics provides that a dark fiber strategy has been highly successful for many organizations. Its benefits include: fixed-cost pricing, increased reliability, higher levels of security, expanded scalability, and simplicity. VDI Research indicates that the pay back from a virtual desktop environment is in the administrative and maintenance costs. VDI technology can save between 30% and 50% of the current cost for IT administrators to manage, patch, upgrade and support PCs in a client/server environment. Estimates indicate that this could cut the annual per desktop support cost from around $530 to $376. Expanded BYOD Research indicates that when allowed to use their own devices, employees enjoy increased mobility, higher job satisfaction, and improvements in efficiency and productivity. An iPass survey of 1100 mobile workers showed that employees who use mobile devices for both work and personal issues put in 240 more hours per year than those who did not.

22. Describe the overall plan to evaluate the impact of the concept, strategy or approaches used in the project.

This plan should include the methodology for measuring all of the project outcomes. Applicants should make sure to outline quantitative approaches to assess progress and measure the overall impact of the project proposal. The response should provide a clear outline of the methods, process, timelines and data requirements for the final analysis of the project’s progress, success or failure. The applicant should provide information on how the lessons learned from the project can and will be shared with other education providers in Ohio.

* Include the name and contact information of the person who will be responsible for conducting the evaluation and whether this will be an internal or external evaluation.

The Center of Assessment and Evaluation Services (CAES) at Bowling Green State University will serve as the external evaluator of this project. CAES will utilize a team of researchers. Dr. Rachel Vannatta Reinhart will serve as the lead evaluator of this project, coordinating all evaluation activities and reports. CAES will implement a five-year mixed methods plan to evaluate the objectives and outcomes of the proposed program. Although the majority of evaluation activities will occur during Year 1, CAES will also continue to assess project outcomes and long-term benchmarks. Contact Information: Dr. Rachel Vannatta Reinhart 419-372-0451 rvanna@bgsu.edu

* Include the method by which progress toward short- and long-term objectives will be measured. (This section should include the types of data to be collected, the formative outputs and outcomes and the systems in place to track the project’s progress).

Short-term Objectives include: -Implement professional development program on blended/online learning environments (Consortium). -Increase teacher knowledge and productivity in blended/online learning (Consortium). -Increase Inquiry-Based Instruction (Consortium) -Increase technology access and use. -Install Fiber Optic Network (FCS, Blanchard-Valley) -Implement Virtual Desktop Infrastructure and expand Teacher BYOD (FCS) -Implement 1:1 (FCS Grades 6-8) -Implement Blended Learning Model (Consortium Grades 3-12) -Integrate STEM equipment (FCS Grades 6-8) -Increase student technology skill and use (Consortium). -Long-term Objectives include: -Increase OAA and OGT scores (Consortium) -Increase blended learning opportunities for students (Consortium). The following types of data will be collected and analyzed to measure program objectives: -Pre/post survey data will evaluate: -Technology and Blended Learning Implementation and Effectiveness (use, skills, technology, attitudes, and impact. Participants include teachers and students. Classroom observation data will evaluate: -Implementation of: Virtual Desktop Infrastructure (FCS), Teacher BYOD (FCS), 1:1 (FCS Grades 6-8), STEM equipment (FCS Grades 6-8), and Blended Learning Model (Consortium Grades 3-12) -Teacher and student technology use -Teacher use of Inquiry-Based Instruction District data will evaluate: -Teacher participation in PD. -Number and type of blended learning courses developed and implemented across Consortium. -Enrollment in blended learning courses across Consortium. -Student achievement gains in OAA and OGT scores.

* Include the method, process and/or procedure by which the project will modify or change the project plan if measured progress is insufficient to meet project objectives.

CAES will regularly participate in meetings with Project Leaders to review Project timeline and objectives. CAES will submit a Formative Evaluation Report in January 2015 to Project Leaders. This report will summarize initial planning and implementation activities and pre survey results. Based upon these results, Consortium districts may modify program plans. Such modifications may include: increasing professional development and/or support for participating teachers, adjusting professional development content, increasing technology accessibility.

23. Describe the substantial value and lasting impact which the project hopes to achieve.

The response should provide specific quantifiable measures of the grant outcomes and how the project will lead to successful attainment of the project goals. Applicants should describe how the program or project will continue after the grant period has expired.

Please enter your response below.

This 21st Century Classroom Technology Initiative is not intended to be a first-order change. Rather, it is intended to be a second-order change, transformational for our school system, changing the appearance and nature of how we educate our students. The goals of the 21st Century Classroom Technology Initiative include increases in student achievement as measured by the state assessments and reported on the district report card. We expect to see at least a 10% increase in student achievement rates over five years. We will track the effect of this project on reducing the dropout rate over five years. Research indicates that when properly implemented, 1:1 projects can lead to significant reduction in dropout rate. Currently FCS has a 91.2% graduation rate, and we expect to see this increase to at least 95% and an A rating on the state report card for this component. Spending reductions in the five-year forecast will also result. As outlined in the financial impact table submitted with this grant, we anticipate the reduction of annual overall operational costs to be $27,929 for the consortium. Sustainability has been built into this project by substantially reducing the operational costs of technology over time. Those funds more than offset the additional recurring costs related to other components of the project and will be reinvested or applied to the classroom. Additionally, according to our research, we anticipate substantial and lasting impact on factors, which are more difficult to quantify, such as student engagement, improved
24. Describe the specific benchmarks, by goal as answered in question 9, which the project aims to achieve in five years. Include any other anticipated outcomes of the project that you hope to achieve that may not be easily benchmarked.

The applicant should provide details on the quantifiable measures of short- and long-term objectives that will be tracked and the source of benchmark comparative data points. Responses should include specified measurement periods and preliminary success points that will be used to validate successful implementation of the project. If a similar project has been successfully implemented in other districts or schools, identification of these comparable benchmarks should be included.

* Student Achievement

Student achievement will be measured by result of state test scores and benchmarked annually in August with the release of the report card. FCS expects a 2.5% annual increase beginning with the 2014-15 report card. Dropout rate is reflected in the district report card through the graduation rate. FCS graduation rate will improve from 91.2% to at least 95% by 2018. We will benchmark this annually, expecting at least a 1% increase per year.

* Spending Reduction in the five-year fiscal forecast

FCS overall operational costs will be documented and benchmarked annually over a five-year period. By the end of FY15 we expect to have reduced expenditures $523,979. At the end of the five-year period (FY19) we expect a total reduction of 3,276,895.

* Utilization of a greater share of resources in the classroom

The number of students having 1:1 devices will be benchmarked annually. Distribution logs will be kept to document this component. By the end of FY15 approximately 400 6th grade students will have a 1:1 device. By FY19, approximately 1300 students will have a device. Records will be kept to document the percentage of students who purchased the device at the end of their 8th grade year. Pre/post technology assessments will be given annually to 6th graders to measure increase in student skill and use. We expect to see significant increase (p<.05) in pre/post scores. Distribution records will be kept in order to document the increased technology in 3rd-5th class. By the end of FY15 all 3rd-5th grade classrooms will have a classroom set of mobile devices. Pre/post technology assessments will be given annually to 3rd-5th graders to measure increase in student skill and use. We expect to see significant increase (p<.05) in pre/post scores. Impact of integration of STEM equipment on middle school science instruction will be measured using a pre/post observation checklist of inquiry based instructional techniques. We expect to see significant increase (p<.05) in frequency of techniques observed in FY15 compared to FY19.

* Implementation of a shared services delivery model

Teacher preparedness (proficiency and attitudes) to teach in a blended learning environment will be measured using a pre/post survey of teachers participating in BLM. We expect to see significant increase (p<.05) in proficiency and attitudes from FY15 compared to FY19. The increase in number of blended learning courses across the consortium will be documented annually in the course selection guides. We anticipate an increase of 2 additional courses annually. The increase in BLM student enrollment will be measured annually and documented through course enrollment counts. We anticipate that by the end of FY19 at least 10% of secondary consortium students will be enrolled in a BLM course.

* Other Anticipated Outcomes

25. Is this project able to be replicated in other districts in Ohio?

☐ Yes

☐ No

If the applicant selects "Yes" to the first part of the question, the response should provide an explanation of the time and effort it would take to implement the project in another district, as well as any plans to share lessons learned with other districts. To every extent possible, applicants should outline how this project can become part of a model so that other districts across the state can take advantage of the learnings from the proposed innovative project. If there is a plan to increase the scale and scope of the project within the district or consortium, it should be included here.

* Explain your response

Providing the financial resources are available, this project, in its entirety, is replicative. Some individual components of the project could be easily replicated and have been implemented successfully in other districts/organizations across the country (i.e. 1:1, BLM, BYOD). Other components are more dependent on staff skill, visionary thinking, financial resources, infrastructure, location, and/or community support (i.e. fiber optics, VDI).

By virtue of applying for the Straight A Fund, all applicants agree to participate in the overall evaluation of the Straight A Fund for the duration of the evaluation time frame. The Governing Board of the Straight A Fund reserves the right to conduct an evaluation of the project and request additional information in the form of data, surveys, interviews, focus groups and other related data on behalf of the General Assembly, Governor and other interested parties for an overall evaluation of the Straight A Fund.

PROGRAM ASSURANCES: I agree, on behalf of this applicant, and any or all identified consortium members or partners, that all supporting documents contain information approved by a relevant executive board or its equivalent and to abide by all assurances outlined in the Straight A Assurances (available in the document library section of the CCIP).

I agree- Martin White Findlay City Schools Director of Information Technology
<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Telephone Number</th>
<th>Email Address</th>
<th>Organization Name</th>
<th>IRN</th>
<th>Address</th>
<th>Delete Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chris</td>
<td>Kniss</td>
<td>419-299-3384</td>
<td>ckniss@vbschools.net</td>
<td>Van Buren High School</td>
<td>038232</td>
<td>217 S Main St, Van Buren, OH, 45889-9720</td>
<td></td>
</tr>
<tr>
<td>Kim</td>
<td>Darnell</td>
<td>419-422-6387</td>
<td>kdarnell@blanchardvalley.org</td>
<td>Blanchard Valley School</td>
<td>117259</td>
<td>1700 E Sandusky St, Findlay, OH, 45840-6463</td>
<td></td>
</tr>
<tr>
<td>First Name</td>
<td>Last Name</td>
<td>Telephone Number</td>
<td>Email Address</td>
<td>Organization Name</td>
<td>IRN</td>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>------------------</td>
<td>---------------</td>
<td>--</td>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Lonnie</td>
<td>Pedersen</td>
<td>419-739-2227</td>
<td>lonnie@telserco.com</td>
<td>Telecommunication Service and Community (TSC)</td>
<td></td>
<td>2 Williepie Street, PO Box 408, Wapakoneta, Ohio, 45895</td>
<td></td>
</tr>
<tr>
<td>Rachel</td>
<td>Reinhart</td>
<td>419-372-0451</td>
<td>rvanna@bgsu.edu</td>
<td>Bowling Green State University (BGSU)</td>
<td></td>
<td>School of Educational Foundations, Education Building Room 556, Bowling Green, Ohio, 43403</td>
<td></td>
</tr>
<tr>
<td>Ray</td>
<td>McCandless</td>
<td>419-434-4565</td>
<td>mccandless@findlay.edu</td>
<td>University of Findlay (UF)</td>
<td></td>
<td>1000 North Main Street, Findlay, Ohio, 45840</td>
<td></td>
</tr>
</tbody>
</table>
Implementation Team

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Title</th>
<th>Responsibilities</th>
<th>Qualifications</th>
<th>Prior Relevant Experience</th>
<th>Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard</td>
<td>Steiner</td>
<td>Director of Secondary Instruction</td>
<td>Mr. Steiner will collaborate and coordinate with Martin White the implementation of the 1:1 6th-8th grade component. He will collaborate with the middle school science teachers on the purchasing and implementation of the Middle school STEM equipment. In addition, he will coordinate the PD needed for middle school science teachers on use of the STEM equipment. Mr. Steiner will collaborate with representatives from UF, the principals of Findlay High School, Van Buren High School, and Blanchard Valley School on the selection of BLM course offerings as well as coordinate the PD needed for students and teachers participating in this program. He will monitor and report to the superintendent and Grant Administrator the progress in each of these areas of the grant.</td>
<td>-Bachelor’s Degree in Comprehensive Mathematics from the University of Toledo - Master’s Degree in Educational Administration from Bowling Green State University -Post Graduate coursework to complete Superintendent Licensure from Bowling Green State University - Held administrative positions as: Junior High Assistant Principal, Junior High Principal, High School Principal, Middle School Principal, Assistant Director of a Career Center, and Superintendent of Local School District.</td>
<td>-Coordinated the complete restructuring of the IT equipment and technology infrastructure of a local school district. -Experience in planning and coordinating multiple, new school district initiatives. -Experiencing in planning, organizing and presenting professional development to teachers, administrators, students and parents. -Experience in preparing and reporting to higher administrators and Boards of Education. -Experience in dealing with newspaper, TV and radio media.</td>
<td></td>
</tr>
<tr>
<td>Martin</td>
<td>White</td>
<td>Director of Information Technology</td>
<td>Has overall responsibility for the implementation of the Straight A grant. Coordinates with the grant administration to ensure that project milestones and deadlines are met, especially as it relates to technology. Coordinates with the district superintendent, curriculum directors, principals and other appropriate stakeholders to ensure that the implementations remains on target and meets the expectations of all stakeholders.</td>
<td>Martin White has a Master of Science degree from Eastern Michigan University. He has served as the director of information technology at Findlay City Schools for the past 7 years. Prior to coming to FCS, Mr. White was the Chief Information Officer for Northwest State Community College. Prior to that he was the Director of the Center for Instructional Technology at Walsh College in Troy, Michigan.</td>
<td>At FCS Mr.White has: Overseen the installation and implementation of the districts Wireless system (1 Million dollar project). Overseen the replacement of the districts analog telephone system with a Cisco VoIP telephone system. Overseen the establishment and implementation of a 6 year technology replacement program. Overseen the movement of the district network operations center to its current location. Served as the lead of the districts move to virtual server infrastructure. Serves as the lead for the districts move to virtual desktop infrastructure. At Northwest State Community College: Mr. White served as the lead in the College’s implementation of the Banner ERP system (a6 million dollar project) Served as the technology lead in the implementation of the College’s synchronous distance learning project to support training in programming at General Mills plants nationally and internationally.</td>
<td></td>
</tr>
<tr>
<td>Stephanie</td>
<td>Roth</td>
<td>Director of Elementary</td>
<td>Mrs Roth will coordinate the PD aspects of the grant in</td>
<td>Mrs Roth has her Masters Degree in</td>
<td>-Lead the FCS RTT transition team through writing and</td>
<td></td>
</tr>
<tr>
<td>Chris Kniss</td>
<td>Director of Technology, Van Buren</td>
<td>As a consortium member, my district’s responsibility is to gather support information requested by the grant applicant and to provide documentation, attend meetings, and provide guidance wherever possible in the grant application process. Later, our responsibility to the grant will be to implement any portion of tasks in order to fulfill the goals of the grant. This may include, but is not limited to, supplying online content for the consortium members, sharing of resources such as connectivity bandwidth, and collaborating with other stakeholders.</td>
<td>-28 years of educational technology experience</td>
<td>Our district has only 1000 students K-12, but has become a technology leader, providing our students with one of the first 1:1 netbook programs in our area, and supplementing our current course offerings with an online component to those courses. While it takes many talented individuals to see a project of this magnitude through to completion, I am able to offer my nearly 28 years of educational technology experience to this project.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Kim Darnall | Technology Coordinator, Blanchard Valley Schools | Kim would serve as the lead at Blanchard valley for the installation and implementation of the fiber optics. Coordinate with installation crews and FCS personnel to ensure that the installation meets the needs of Blanchard Valley. | Kim has an Associate’s Degree from Owens Community College. She has 15 years’ experience in network management and implementation as well as educational technology support. | For the past 15 years Kim has been the Technology Coordinator for Blanchard Valley School and Center. She managed the $1.6 million technology infrastructure installation at BVC. This project included wireless, fiber and copper between all buildings, design of the MDF, IDF and classroom/office wiring. She manages 6 servers, including back up, disaster recovery, de-duplication, email, firewall, database and web server functions. |