Budget

U.S.A.S. Fund #:

Plus/Minus Sheet (opens new window)

<table>
<thead>
<tr>
<th>Purpose Code</th>
<th>Object Code</th>
<th>Salaries 100</th>
<th>Retirement Fringe Benefits 200</th>
<th>Purchased Services 400</th>
<th>Supplies 500</th>
<th>Capital Outlay 600</th>
<th>Other 800</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>6.00</td>
<td>45,700.00</td>
<td>0.00</td>
<td>45,706.00</td>
</tr>
<tr>
<td>Support Services</td>
<td>63,200.00</td>
<td>9,764.40</td>
<td>3,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>75,964.40</td>
</tr>
<tr>
<td>Governance/Admin</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Prof Development</td>
<td>55,040.00</td>
<td>8,967.18</td>
<td>60,000.00</td>
<td>6,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>130,007.18</td>
</tr>
<tr>
<td>Family/Community</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Safety</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Facilities</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Transportation</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>118,240.00</td>
<td>18,731.58</td>
<td>63,000.00</td>
<td>6,006.00</td>
<td>45,700.00</td>
<td>0.00</td>
<td>0.00</td>
<td>251,677.58</td>
</tr>
</tbody>
</table>

Adjusted Allocation 0.00

Remaining -251,677.58
A) APPLICANT INFORMATION - General Information

1. Project Title: Learning By Doing: Technology-Rich Performance-Based Science Instruction

2. Executive summary: Please limit your responses to no more than three sentences.

To enable all Ohio students to master the new science content standards and performance-based assessments, the Solon City Schools will develop technology-rich inquiry-based instructional modules and performance-based assessments in science. The modules will contain engaging learning activities that promote learner cooperation and collaborative problem solving with technology. The district will build and share publicly a web-based application that will enable teachers and students to assess and monitor progress on pre and post assessments to make real-time instructional decisions.

This is an ultra-concise description of the overall project. It should not include anything other than a brief description of the project and the goals it hopes to achieve.

4854 3. Total Students Impacted:

This is the number of students that will be directly impacted by implementation of the project. This does not include students that may be impacted if the project is replicated or scaled up in the future.

4. Please indicate which of the following grade levels will be impacted:

- Pre-K Special Education
- Kindergarten
- Grade 1
- Grade 2
- Grade 3
- Grade 4
- Grade 5
- Grade 6
- Grade 7
- Grade 8
- Grade 9
- Grade 10
- Grade 11
- Grade 12

5. Lead applicant primary contact: - Provide the following information:

First Name, last Name of contact for lead applicant
Debbie Siegel

Organizational name of lead applicant
Solon City Schools

Address of lead applicant
33800 Inwood Rd., Solon OH 44139

Phone Number of lead applicant
440-349-6205

Email Address of lead applicant
debbiesiegel@solonboe.org

6. Are you submitting your application as a consortium? - Select one checkbox below

- Yes
- No

If you are applying as consortium, please list all consortium members by name on the "Consortium Member" page by clicking on the link below. If an educational service center is applying as the lead applicant for a consortium, the first consortium member entered must be a client district of the educational service center.

Add Consortium Members

7. Are you partnering with anyone to plan, implement, or evaluate your project? - Select one checkbox below
B) PROJECT DESCRIPTION - Overall description of project and alignment with goals

8. Describe the innovative project: - Provide the following information

The response should provide a clear and concise description of the project and its major components. Later questions will address specific outcomes and the measures of success.

The current state or problem to be solved; and

The new state science standards require students to work collaboratively to analyze problems, research solutions and present findings. This project will focus on solving three problems: - Conventional science instruction does not provide sufficient opportunities for students to think and behave like scientists; - Teachers lack the necessary skills to develop and implement technology-rich inquiry-based learning that fosters scientific reasoning; and - The absence of user friendly tools to help teachers collect and analyze student performance data makes adapting instruction in real-time cumbersome and ineffective.

The proposed innovation and how it relates to solving the problem or improving on the current state.

Our proposed innovation will address these problems through the following components: - Inquiry-based instructional modules will be developed with performance-based assessments. Classrooms will be equipped with iPads, Chromebooks and next generation probes for students to research problems, collect and analyze data, and present their solutions. - A science teaching academy will be scheduled to develop and implement technology-rich, inquiry-based science modules and performance-based assessments. - A web-based tool will be developed to store, analyze and report student performance and growth data. The goal of this project is to provide teachers with concrete models and modern tools necessary to create learner-centered inquiry-based classrooms. In these classrooms, students will be actively engaged in using science tools, as they think, plan, investigate, observe and share scientific knowledge. Technology will be seamlessly integrated into the processes of scientific inquiry including data collection and analysis, online research, and presenting results and solutions.

9. Which of the stated Straight A Fund goals does the proposal aim to achieve? - (Check all that apply)

Applicants should select any and all goals the proposal aims to achieve. The description of how the goals will be met should provide the reader with a clear understanding of what the project will look like when implemented, with a clear connection between the components of the project and the stated goals of the fund. If partnerships/consortia are part of the project, this section should describe briefly how the various entities will work together in the project. More detailed descriptions of the roles and activities will be addressed in Question 16.

- **Student achievement (Describe the specific changes in student achievement you anticipate as a result of this innovation (include grade levels, content areas as appropriate) in the box below.)**

 The new state science standards and performance-based assessments will require students to demonstrate their knowledge and skills in significantly different and more rigorous ways than those provided by the current assessment system. The outcome of this project is to increase student achievement in science. Specifically, the state science standards and Ohio's Next-Generation Assessments in science require students to demonstrate higher levels of proficiency in critical thinking, transferring their knowledge to new situations, and applying scientific principles to unfamiliar problems. Student scores on practice performance-based assessments are significantly lower than current assessments. These scores suggest that our students need more opportunities with inquiry learning and performance assessments. Research has shown that student-centered inquiry-based instruction promotes student achievement and growth. As the result of this project, students will participate in more day-to-day technology-enhanced science experiences to develop the skills and strategies to solve problems in real-world contexts. Likewise, this grant will improve teacher skills in the design and implementation of effective instructional activities that are aligned to new standards and assessments.

- **Spending reductions in the five-year fiscal forecast or positive performance on other approved fiscal measures (Describe the specific reductions you anticipate in terms of dollars and spending categories over a five-year period in the box below or the positive performance you will achieve on other approved fiscal measures. Other approved fiscal measures include a reduction in spending over a five-year period in the operating budget approved by your organization’s executive board or its equivalent.)**

- **Utilization of a greater share of resources in the classroom (Describe specific resources (Personnel, Time, Course offerings, etc.) that will be enhanced in the classroom as a result of this innovation in the box below.)**

- **Implementing a shared services delivery model (Describe how your shared services delivery model will demonstrate increased efficiency and effectiveness, long-term sustainability, and scalability in the box below.)**

10. Which of the following best describes the proposed project? - (Select one)

- New - never before implemented
C) SUSTAINABILITY - Planning for ongoing funding of the project, cost breakdown

11. Financial Documentation: All applicants must enter or upload the following supporting information. The information in these documents must correspond to your responses in questions 11-14.

* Enter a project budget in CCIP (by clicking the link below)

Enter Budget

* If applicable, upload the Consortium Budget Worksheet (by clicking the link below)

* Upload the Financial Impact Table (by clicking the link below)

* Upload the Supplemental Financial Reporting Metrics (by clicking the link below)

Upload Documents

For applicants without an ODE Report Card for 2012-2013, provide a brief narrative explanation of the impact of your grant project on per pupil expenditures or why this metric does not apply to your grant project instead of uploading the Supplemental Financial Reporting Metric.

The project budget is entered directly in CCIP. For consortia, this project budget must reflect the information provided by the applicant in the Consortium Budget Worksheet. Directions for the Financial Impact Table are located on the first tab. Applicants must submit one Financial Impact Table with each application. For consortium applications, each consortium member must add an additional tab on the Financial Impact Tables. Partners are not required to submit a Financial Impact Table.

Applicants with an "Ohio School Report Card" for the 2012-2013 school year must upload the Supplemental Financial Reporting Metrics to provide additional information about cost savings and sustainability. Directions for the Supplemental Financial Reporting Metrics are located on the first tab of the document. If your organization does not have an "Ohio School Report Card" for the 2012-2013 school year, please provide an explanation in the text box about how your grant project will impact expenditures per pupil.

Educational service center, county boards of developmental disabilities, and institutions of higher education seeking to achieve positive performance on other approved fiscal measures should submit the budget information approved by an executive board or its equivalent on the appropriate tabs of the Financial Impact Table. Educational service centers should use the "ESC" tab and county boards of developmental disabilities and institutions of higher education should use the "non-traditional" tab.

12. What is the total cost for implementing the innovative project?

Responses should provide rationale and evidence for each of the budget items and associated costs outlined in the project budget. In no case should the total projected expenses in the budget narrative exceed the total project costs in the budget grid.

251,671.58 State the total project cost.

* Provide a brief narrative explanation of the overall budget.

13. Will there be any costs incurred as a result of maintaining and sustaining the project after June 30th of your grant year?

Sustainability costs include any ongoing spending related to the grant project after June 30th of your grant year. Examples of sustainability costs include annual professional development, equipment maintenance, and software license agreements. To every extent possible, rationale for the specific amounts given should be outlined. The costs outlined in the narrative section should be consistent and verified by the financial documentation submitted and explained in the Financial Impact Table. If the project does not have sustainability costs, applicants should explain why.

Yes - If yes, provide a narrative explanation of your sustainability costs as detailed in the Financial Impact Table in the box below.

Approximately $3,000 per year will be needed for software maintenance on newly developed data management and analysis tools. Approximately $61,000 will be needed to conduct week-long summer science academies in years two and three.

No - If no, please explain why (i.e. maintenance plan included in purchase price of equipment) in the box below.
14. Will there be any expected savings as a result of implementing the project?

- Yes
- No

Applicants with sustainability costs in question 13 or seeking to achieve significant advancement in spending reductions in the five-year forecast must address this response. Expected savings should match the information provided by the applicant in the Financial Impact Table. All spending reductions must be verifiable, permanent, and credible. Applicants may only respond "No" if the project will not incur any increased costs as a result of maintaining and sustaining the project after June 30th of your grant year. The Governing Board will use the cost savings as a tiebreaker between applications with similar scores during its final selection process. Cost savings will be calculated as the amount of expected cost savings less sustainability costs relative to the project budget.

19,200.00 If yes, specify the amount of annual expected savings. If no, enter 0.

If yes, provide details on the expected savings (i.e. staff counts and salary/benefits, equipment to be purchased and cost, etc.). If no, please explain.

By developing tools in house, purchase of assessment management and analysis modules in PowerSchool will no longer be necessary. Utilizing an internally developed solution will yield an estimated savings of $19,200 in annual software subscription costs.

15. Provide a brief explanation of how the project is self-sustaining.

All Straight A Fund grant projects must be expenditure neutral. For applications with increased ongoing spending as documented in question 11-14, this spending must be offset by expected savings or reallocation of existing resources. These spending reductions must be verifiable, permanent, and credible. This information must match the information provided in your Financial Impact Table. Projected additional income may not be used to offset increased ongoing spending because additional income is not allowed by statute. Please consider inflationary costs like salaries and maintenance fees when considering whether increased ongoing spending has been offset for at least five years after June 30th of your grant year. For applications without increased ongoing spending as documented in questions 11-14, please demonstrate how you can sustain the project without incurring any increased ongoing costs.

For educational service centers and county boards of developmental disabilities that are members of a consortium, any increased ongoing spending at the educational service center or county board of developmental disabilities may also be offset with the verifiable, permanent, and credible spending reductions of other members of the consortium. This increased ongoing spending must be less than or equal to the sum of the spending reductions for the entire consortium.

Explain in detail how this project will sustain itself for at least five years after June 30th of your grant year.

The annual science academy costs will be offset in years two and three through the reallocation of the district's existing summer professional development funds. After year three, all of the district's science teachers will have participated in one of the week-long summer science inquiry academies. In years four and five, all new science teachers will be coached through the district's mentoring program and job-embedded professional development program. The cost to sustain the ongoing implementation of the project will be mitigated in large part by the contractual obligations of all teachers to meet for more than 100 hours of job-embedded professional development annually. A significant portion of this professional development will be dedicated to this project. Since the district will reallocate existing professional development expenses, professional development and curriculum implementation costs associated with this project are expenditure neutral.

D) IMPLEMENTATION - Timeline, scope of work and contingency planning

16. Please provide a brief description of the team or individuals responsible for the implementation of this project, including other consortium members and/or partners.

This response should include a list of qualifications for the applicant and others associated with the grant. If the application is for a consortium or a partnership, the lead should provide information on its ability to manage the grant in an effective and efficient manner. Include the partner/consortium members' qualifications, skills and experience with innovative project implementation and projects of similar scope.

Enter Implementation Team information by clicking the link below:

Add Implementation Team

For Questions 17-19 please describe each phase of your project, including its timeline, scope of work, and anticipated barriers to success.

A complete response to these questions will demonstrate specific awareness of the context in which the project will be implemented, the major barriers that need to be overcome and the time it will take to implement the project with fidelity. A strong plan for implementing, communicating and coordinating the project should be outlined, including coordination and communication in and amongst members of the consortium or partnership (if applicable). It is recognized that specific action steps may not be included, but the outline of the major implementation steps should demonstrate a thoughtful plan for achieving the goals of the project. The time line should reflect significant and important milestones in an appropriate and reasonable time frame.

17. Planning - Activities prior to the grant implementation

* Date Range July 1, 2014 - August 1, 2014

* List of scope of work (activities and/or events including project evaluation discussions, communication and coordination among entities).

1. Design the Summer Science Inquiry Academy, including: a. Academy Facilitators - Identify science and technology teachers to serve as academy facilitators and ongoing project trainers. b. Inquiry Pedagogy - Identify core components of technology-rich inquiry pedagogy. c. Inquiry Modules - Determine the critical attributes and design exemplar technology-rich inquiry modules. d. Performance-based
Assessments - identify the critical attributes and design model performance-based assessments. 2. Plan ongoing support and follow-up activities for teacher teams to implement technology-rich inquiry modules and performance-based assessments. 3. Develop specifications for a web-based tool to collect, store, analyze, and report student achievement data.

* Anticipated barriers to successful completion of the planning phase

Barriers: The major barrier in the planning phase that must be overcome is the compressed time frame to plan. The following tasks must be completed between July 1 and August 4: 1. Identifying and training academy facilitators. 2. Designing exemplar concrete, replicable learning modules in the absence of exemplars models from which to work. 3. Scheduling a common block of time for the Summer Science Inquiry Academy. 4. Identifying a software developer with the required skills and experience who understands the unique needs of educators. Possible Solutions to Identified Barriers: 1. Utilize outside experts to train academy facilitators and provide exemplar academy training materials. 2. Utilize existing and make new contacts with the Ohio Department of Education, Departments of Education from other states, known assessment consultants, university experts, and an ongoing review of the literature in science education to aid in the design of the academy materials. 3. Conduct multiple offerings of the academy to accommodate staff schedules during the summer and fall. 4. Research models of technology-rich inquiry-based science instruction and learning modules. 5. Identify and employ an educator/web developer (((ARE WE COSTING IN BRYNT OR SOMEONE ELSE???)))with sufficient programming experience to ensure that the web-based tool is designed with maximum benefits in user-friendliness and effectiveness.

18. Implementation - Process to achieve project goals

* Date Range August 4, 2013 - June 1, 2015

* List of scope of work (activities and/or events, including deliverables, project milestones, interim measurements, communication, and coordination).

1. Conduct the Summer Science Inquiry Academy (August 4-8, 2014). Participants will attend a week-long summer professional development academy. Instructional strategies will include technology-rich inquiry-based science activities, including simulations, hands-on science and technology. Academy outcomes will include: a. Inquiry Pedagogy - Classroom teachers will develop a plan to remodel their classroom environment to provide students with additional opportunities to engage in inquiry-based learning. b. Inquiry Modules - Participants will produce two technology-rich inquiry modules for implementation during first quarter 2014. c. Performance-based Assessments - Classroom teachers will develop a performance-based assessment for each inquiry module. 2. Ongoing Teacher Support (August 19, 2014-June 3, 2015). Teacher teams will meet weekly to support implementation of initial inquiry modules, identify pedagogical and technology support needs, and design additional modules. 3. Field Test Web-based Data Collection Tool (November 3 - December 19, 2014). Classroom teachers will conduct field tests with initial technology-rich inquiry module data and academy participants, followed by large-scale tests with full data sets.

* Anticipated barriers to successful completion of the implementation phase.

The major barrier in the planning phase that must be overcome is the compressed time frame to plan. - Lack of student exposure to technology-rich inquiry-based approaches to learning science content. - Lack of student exposure to quality examples of technology-rich inquiry-based instructional modules aligned to curriculum standards. - Lack of experience of teachers developing and students taking performance-based assessments. - Lack of experience of teachers developing and students taking performance-based assessments. - Lack of user friendly web-based data collection and analysis. Possible Solutions to Identified Barriers: - Implement inquiry-based modules to provide students multiple exposures to practice learning in this new environment. - Provide teachers with concrete examples of inquiry-based instruction, extensive hands-on technology experiences, and ongoing support throughout the year to ease concerns and facilitate the change process. - Utilize science experts in the development of initial modules to provide teachers with strong examples to serve as models of future instruction. - Develop multiple assessments to provide teachers with the experience needed to gain confidence in performance-based assessments. - Provide teachers with a user friendly web-based data collection and analysis tool.

19. Summative Evaluation - Plans to analyze the results of the project

* Date Range September 15, 2014 to June 30, 2015

* List of scope of work (activities and/or events, including quantitative and qualitative benchmarks and other project milestones).

Summer Science Inquiry Academy Evaluation complete: September 15, 2014 An external evaluation consultant will develop questionnaires to evaluate the effectiveness of the Summer Science Inquiry Academy and report to the planning committee. Performance-Based Inquiry Modules Implementation Evaluation complete: June 2015 Evaluation of the implementation of performance-based inquiry learning modules will be conducted by the external evaluation consultant through meetings with teacher teams and in-class observations. The focus will be student engagement and fidelity of lesson implementation. Data from these meetings and observations will be collected via an observation protocol and meeting logs. At the conclusion of the project, the efficacy of lesson modules will be assessed via the Web-based Data Collection and Analysis Tool. Web-based Data Collection and Analysis Tool Evaluation complete: June 2015 Evaluation of the web-based data collection and analysis tool will be conducted with industry standard software evaluation methods. Criteria will include: - Timely completion of the software - Reliability of the system (uptime) - Degree to which it met system specifications - Frequency of teacher usage. - User friendliness assessed via survey administered to all teachers. Project Benefits Analysis Evaluation complete: June 2015 At the end of the project, teachers will complete a survey to assess project benefits including: - Classroom culture - Student learning and engagement - Sustainability of inquiry-based instruction - Needed support - Overall project success.

* Anticipated barriers to successful completion of the summative evaluation phase.

Barriers The major barriers in conducting project evaluation include: - Lack of existing reliable and valid evaluation instruments and methods. - Lack of a mechanism for ensuring evaluation results are implemented. Barrier mitigation - The possible ways the barriers can be mitigated include: - Utilize external consultants to design evaluation mechanisms that provide effective feedback. - Communicate expectations about the district purpose of the tools and the feedback required. - Act on internal and external feedback.

20. Describe the expected changes to the instructional and/or organizational practices in your institution.

* The response should illustrate the critical instructional and/or organizational changes that will result from implementation of the grant and the impact of these changes. These changes can include permanent changes to current district processes, new processes that will be incorporated or the
removal of redundant or duplicative processes. The response may also outline the expected change in behaviors of individuals (changes to classroom practice, collaboration across district boundaries, changes to a typical work day for specific staff members, etc.). The expected changes should be realistic and significant in moving the institution forward.

Please enter your response below:

As a result of this grant, teachers will prepare students for new science standards and corresponding assessments. Science classrooms will be learning environments in which students seamlessly use technology to pose questions, design experiments, analyze data and propose solutions to real-world problems. Teachers will increasingly act as facilitators and coaches in these learner-centered, technology-rich laboratories.

E) SUBSTANTIAL IMPACT AND LASTING VALUE - Impact, evaluation and replication

The responses in this section are focused on the ability to design a method for evaluating the project's capacity for long-term sustainable results. Therefore, the questions focus on the method of defining the problem(s) the project hopes to solve and the measures that will determine if the problem (s) have been solved.

21. Describe the rationale, research or past success that supports the innovative project and its impact on student achievement, spending reduction in the five-year fiscal forecast or utilization of a greater share of resources in the classroom.

The response should provide a concise explanation of items which provide rationale that will support the probability of successfully achieving the goals of the project. Answers may differ based on the various levels of development that are possible. If the proposal is for a new, never before implemented project, the response should provide logical, coherent explanations of the anticipated results based on some past experience or rationale. For projects that have been implemented on a smaller scale or successfully in other organizations, the response should provide the quantifiable results of the other projects. If available, relevant research in support of this particular proposal should also be included.

Please enter your response below.

22. Describe the overall plan to evaluate the impact of the concept, strategy or approaches used in the project.

This plan should include the methodology for measuring all of the project outcomes. Applicants should make sure to outline quantitative approaches to assess progress and measure the overall impact of the project proposal. The response should provide a clear outline of the methods, process, timelines and data requirements for the final impact of the project's progress, success or failure. The applicant should provide information on how the lessons learned from the project can and will be shared with other education providers in Ohio.

* Include the name and contact information of the person who will be responsible for conducting the evaluation and whether this will be an internal or external evaluation.

The project evaluation will be led Dave Dalton from Kent State University (ddalton@kent.edu), an external evaluation consultant. Dr. Dalton will work closely with the planning team to assess the quality of the summer professional development academies, development and implementation of technology rich inquiry-based science learning modules, user friendliness and effectiveness of web-based data collection and analysis tool, and the overall benefits of the project.

* Include the method by which progress toward short- and long-term objectives will be measured. (This section should include the types of data to be
At the conclusion of the project, the Planning Team will meet with the external consultant to review usage statistics and user friendliness of the web-based data collection and analysis tool. Also at the conclusion of the project, the Planning team and the external consultant will review results from the Project Benefits survey. There are two short-term goals for this project. The first short-term goal is to design and deliver an effective and well-received Summer Science Inquirt Academy in year one that provides attendees with skills to develop technology-rich inquiry-based science modules. Evaluation data for this goal will consist of quantitative and qualitative data from a survey administered to participants at the end of the academy. The second short-term goal is to develop exemplar lesson modules during the academy. These modules will be evaluated using a rubric to ensure that they engage students in authentic science inquiry and require students to use technology effectively to research and present solutions. There are three long-term goals for this project. First, through the Summer Science Inquiry Academies in years two and three, all district science teachers will learn new inquiry-based science teaching strategies and learn to develop technology-rich inquiry-based science modules. Like the year one academy, participant satisfaction will be evaluated with a questionnaire at the end of each academy. Second, fidelity of implementation of technology-rich inquiry-based science modules will be monitored with an in-class observation protocol and reviewed with teachers and the project team. The third long-term goal is the development and implementation of a web-based student performance data collection and analysis tool. The quality of this tool will be assessed using industry standard protocols that include compliance with the originally specified feature set and teacher usability. Specific data sources will include a user friendliness survey and frequency collected, the formative outputs and outcomes and the systems in place to track the project’s progress.

* Include the method, process and/or procedure by which the project will modify or change the project plan if measured progress is insufficient to meet project objectives.

The Project Planning Team will convene regularly with the external consultant to review evaluation data. Based on those reviews, the team will modify project plans to ensure project success. The Project Planning Team will convene quarterly to review lesson module implementation, performance based assessment implementation, development and use of the electronic data analysis tool, and determine where additional support and/or revision is required.

23. Describe the substantial value and lasting impact which the project hopes to achieve.

* The response should provide specific quantifiable measures of the grant outcomes and how the project will lead to successful attainment of the project goals. Applicants should describe how the program or project will continue after the grant period has expired.

Please enter your response below.

The lasting impact of this project will be the development of technology-rich, inquiry-based science modules with corresponding performance assessments aligned to new science standards. The culture of science classrooms will shift from teacher-centered lecture-based instruction to student-centered learning environments in which students behave like scientists by conducting experiments, posing questions, working with authentic data, and generating solutions. In addition to building content and pedagogical expertise of science teachers, the district will prepare internal facilitators to sustain project goals after the grant period. In the first year, the grant will focus on 5th and 8th grade science, high school Physical Science, and Biology courses. In the second year, the focus will be 4th, 6th and 7th grade science, high school Chemistry and Physics. The third year will focus on K-3 science and all other high school courses. All Ohio districts will have access to the modules, assessments and data tools to help ensure students meet the new Ohio Science Standards.

24. Describe the specific benchmarks, by goal as answered in question 9, which the project aims to achieve in five years. Include any other anticipated outcomes of the project that you hope to achieve that may not be easily benchmarked.

* The applicant should provide details on the quantifiable measures of short- and long-term objectives that will be tracked and the source of benchmark comparative data points. Responses should include specified measurement periods and preliminary success points that will be used to validate successful implementation of the project. If a similar project has been successfully implemented in other districts or schools, identification of these comparable benchmarks should be included.

* Student Achievement

Benchmark 1: As measured Ohio’s Next-Generation Assessments, all students will meet or exceed performance standards in science.

Benchmark 2: As measured by the number of inquiry-based modules developed and implemented, the frequency of inquiry-based instruction will increase. Benchmark 3: As measured by usage statistics from the web-based data collection and analysis tool, teachers will access and analyze student data with greater frequency. Benchmark 4: As measured by the Project Benefits Analysis survey, teacher attitude toward inquiry-based science will improve.

* Spending Reduction in the five-year fiscal forecast

* Utilization of a greater share of resources in the classroom

* Implementation of a shared services delivery model

* Other Anticipated Outcomes

25. Is this project able to be replicated in other districts in Ohio?

☐ Yes

☐ No
If the applicant selects “Yes” to the first part of the question, the response should provide an explanation of the time and effort it would take to implement the project in another district, as well as any plans to share lessons learned with other districts. To every extent possible, applicants should outline how this project can become part of a model so that other districts across the state can take advantage of the learnings from the proposed innovative project. If there is a plan to increase the scale and scope of the project within the district or consortium, it should be included here.

* Explain your response

Science modules, training materials, and the web-based data analysis tools will be made freely available to interested districts. Since the tools and materials are aligned to the new science content standards, and will have been field tested, other districts should be able to integrate them into their instructional programs.

By virtue of applying for the Straight A Fund, all applicants agree to participate in the overall evaluation of the Straight A Fund for the duration of the evaluation time frame. The Governing Board of the Straight A Fund reserves the right to conduct an evaluation of the project and request additional information in the form of data, surveys, interviews, focus groups and other related data on behalf of the General Assembly, Governor and other interested parties for an overall evaluation of the Straight A Fund.

PROGRAM ASSURANCES: I agree, on behalf of this applicant, and any or all identified consortium members or partners, that all supporting documents contain information approved by a relevant executive board or its equivalent and to abide by all assurances outlined in the Straight A Assurances (available in the document library section of the CCIP).

Yes
<table>
<thead>
<tr>
<th>Consortium Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>No consortium contacts added yet. Please add a new consortium contact using the form below.</td>
</tr>
<tr>
<td>Partnerships</td>
</tr>
<tr>
<td>-------------</td>
</tr>
</tbody>
</table>

No partners added yet. Please add a new partner by using the form below.
<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Title</th>
<th>Responsibilities</th>
<th>Qualifications</th>
<th>Prior Relevant Experience</th>
<th>Delete Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabrina</td>
<td>Tirpak</td>
<td>Curriculum Gifted Resource Teacher (Science), Solon City School</td>
<td>Sabrina's role on the grant team will be serving as Inquiry Academy lead teacher and helping to design and implement the inquiry-based labs and modules as a science teacher leader. Sabrina is the curriculum and gifted resources teacher at Orchard Middle School. She earned a BS in Elementary Education from Miami University, as well as a Master of Arts in Curriculum and Instruction and Gifted endorsement from Kent State University. In her position as CGR teacher, she teaches third through sixth grade gifted classes and serves as curriculum team leader for fifth and sixth grade social studies and science. Her role on the grant team will be serving as Inquiry Academy lead teacher and helping to design and implement the inquiry-based labs and modules as a science teacher leader.</td>
<td>Sabrina is the curriculum and gifted resources teacher at Orchard Middle School. In her position as CGR teacher, she teaches third through sixth grade gifted classes and serves as curriculum team leader for fifth and sixth grade social studies and science.</td>
<td>Sabrina earned a BS in elementary education from Miami University, as well as a Master of Arts in curriculum and instruction and gifted endorsement from Kent State University.</td>
<td>Sabrina</td>
</tr>
<tr>
<td>Name</td>
<td>Title</td>
<td>Role</td>
<td>Experience</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Debbie</td>
<td>Siegel, Assistant Superintendent, Solon City Schools</td>
<td>Debbie will serve as the project leader for the grant implementation team. Her area of assignment is curriculum, instruction and assessment. She has led the implementation of a variety of grant projects similar to Straight A, including Deregulation Grant - Common Assessment Development in Reading and Writing with Corresponding Rubrics; Raising the Bar in the Middle Grant - Technology-Enriched Project-Based Learning; High School and Elementary Venture Capital Grants - Implementing Professional Learning Communities; Teacher Advancement Program Grant - Developing Teacher Leaders, Evaluation and Content Teams, all from the Ohio Department of Education.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitney</td>
<td>Ames, Curriculum & Technology Resource Teacher, Solon City Schools</td>
<td>Whitney's role on the grant project team will be serving as an Inquiry Academy lead teacher and technology integration specialist. Whitney is a curriculum and technology resource teacher at Solon Middle School. In her position as curriculum and technology resource, she works with staff members to effectively integrate technology into their curriculum and develop curriculum to meet academic content standards.</td>
<td>Whitney earned a BS in Integrated Science Education from Ohio University and a Masters of Arts in Instructional Technology from Kent State University.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terry</td>
<td>Brownlow, High School Assistant Principal, Solon City Schools</td>
<td>For the grant project, Terry will be working with teams on creating the inquiry-based lessons as well as designing the assessments for learning. Terry is assistant principal for curriculum and instruction at Solon High School. She leads the professional learning communities at Solon High School and works with all disciplines on instructional and assessment design.</td>
<td>This is Terry's 29th year in education. She is a graduate of Kent State University and The Ohio State University.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamara</td>
<td>Strom, Director of Communications, Solon City Schools</td>
<td>Tammy's role on the team will be grant project integration and communication. She has extensive experience implementing the communications objectives of significant grants, including a Changing Behaviors Toward Long-Term Care Insurance grant from the Mt. Sinai Health Care Foundation and Sun Safety: Protecting Our Future and Developing a National Skin Cancer Agenda grant from the U.S. Centers for Disease Control and Prevention. Tammy has been communications director for the Solon Schools for 12 years and has worked in nonprofit public relations, government relations and communications for 29 years. She has BA degrees in English/journalism and political science from Miami University. Tammy has extensive experience implementing the communications objectives of significant grants, including a Changing Behaviors Toward Long-Term Care Insurance grant from the Mt. Sinai Health Care Foundation and Sun Safety: Protecting Our Future and Developing a National Skin Cancer Agenda grant from the U.S. Centers for Disease Control and Prevention.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David</td>
<td>Dalton, Associate Professor of</td>
<td>Dave will serve as a consultant to the project team Dave is an associate professor of instructional Dave has worked on a variety of grant projects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mike Acomb</td>
<td>Elementary Principal, Solon City Schools</td>
<td>For the grant project, Mike will be working with teacher teams on creating the inquiry-based lessons as well as designing the assessments for learning. Mike is a current elementary and former middle school principal in the Solon City Schools. His areas of expertise include a knowledge of best practices in assessment, curriculum and instruction, as well as technology. Mike has experience with the implementation of the Teacher Advancement Program grant awarded to Orchard Middle School by the Milken Family Foundation/Ohio Department of Education. For nearly two decades, he has also been a key leader in the successful implementation of the district's curricular programs and initiatives, which have enabled the district to achieve the highest levels of student achievement and growth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fred Bolden</td>
<td>Director of Business and Personnel, Solon City Schools</td>
<td>Fred will be the primary person responsible for all capital acquisitions required for the project. He will also assist the developer in the initial data modeling for the assessment management and analysis tools. Fred has been the lead developer for multiple data analysis and reporting tools utilized by the Solon City School district. Fred has been an educational leader and curriculum developer in the Solon Schools for more than 16 years.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brynt Sines</td>
<td>Curriculum Technology Resource Teacher/Lead Developer, Solon City Schools</td>
<td>Brynt will lead the technology development team for this grant. Brynt is the curriculum technology resource lead teacher at Solon High School and the web manager/developer for Solon City Schools. In his current role in the district, Brynt provides technology integration support to educators in grades 9-12. Brynt graduated with a BS in Mathematics from Frostburg State University, Master of Arts in Mathematics from Cleveland State University and a Master of Arts in Instructional Technology from the University of Akron. He has 20 years of experience as a secondary teacher in math and technology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeffrey Grimm</td>
<td>Science Department Chair, Solon High School</td>
<td>Jeff's roles in the grant project will be serving as Inquiry Academy lead teacher for biology, facilitating the technology professional development for the science department and helping design student-focused inquiry-based labs to help foster a love of the scientific process. Jeff is in his 19th year teaching at Solon High School and has taught all levels of biology, including AP biology, and science investigations. Jeff graduated with a BA in biology from Miami University and Master of Arts in teaching from Kent State University.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>