<table>
<thead>
<tr>
<th>Purpose Code</th>
<th>Object Code</th>
<th>Salaries 100</th>
<th>Retirement Fringe Benefits 200</th>
<th>Purchased Services 400</th>
<th>Supplies 500</th>
<th>Capital Outlay 600</th>
<th>Other 800</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td>100</td>
<td>112,320.00</td>
<td>17,893.00</td>
<td>214,650.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>344,863.00</td>
</tr>
<tr>
<td>Support Services</td>
<td>200</td>
<td>70,000.00</td>
<td>24,500.00</td>
<td>143,577.00</td>
<td>5,800.00</td>
<td>0.00</td>
<td>0.00</td>
<td>243,877.00</td>
</tr>
<tr>
<td>Governance/Admin</td>
<td>400</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Prof Development</td>
<td>500</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Family/Community</td>
<td>600</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Safety</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Facilities</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>136,000.00</td>
<td>0.00</td>
<td>136,000.00</td>
</tr>
<tr>
<td>Transportation</td>
<td>800</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Indirect Cost</td>
<td>900</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>182,320.00</td>
<td>42,393.00</td>
<td>143,577.00</td>
<td>220,450.00</td>
<td>136,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>724,740.00</td>
</tr>
</tbody>
</table>

Adjusted Allocation 0.00

Remaining -724,740.00
Please respond to the prompts or questions in the areas listed below in a narrative form.

A) APPLICANT INFORMATION - General Information

1. Project Title:
I-STEM Pathway Program

2. Project Summary: Please limit your responses to no more than three sentences.
RSC will partner with Bath and Allen East high schools to launch a dual enrollment I-STEM Pathway program for grades 9-12.

This is an ultra-concise description of the overall project. It should only include a brief description of the project and the goals it hopes to achieve.

3. Estimate of total students at each grade level to be directly impacted each year.

This is the number of students that will receive services or other benefits as a direct result of implementing this project. This does not include students that may be impacted if the project is replicated or scaled up in the future. It excludes students who have merely a tangential or indirect benefit (such as students having use of improved facilities, equipment etc. for other uses than those intended as a part of the project). The Grant Year is the year in which funds are received from the Ohio Department of Education. Years 1 through 5 are the sustainability years during which the project must be fiscally and programmatically sustained.

<table>
<thead>
<tr>
<th>Grant Year</th>
<th>Pre-K Special Education</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td>K</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td></td>
<td>K</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td></td>
<td>K</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td></td>
<td>K</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 5</td>
<td></td>
<td>K</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>
4. Explanation of any additional students to be impacted throughout the life of the project. This includes any students impacted or estimates of students who might be impacted through future scale-ups or replications that go beyond the scope of this project.

It is anticipated that there will be minimal indirect impact upon those students not participating in the I-STEM Pathway program. However, it is hoped that the program may be expanded at the two host high schools and ultimately replicated at other area College Credit Plus high school partner campuses.

5. Lead applicant primary contact: - Provide the following information:

First and last name of contact for lead applicant
Dr. Debra L. McCurdy

Organizational name of lead applicant
James A. Rhodes State College

Address of lead applicant
4240 Campus Drive, Lima, OH 45804

Phone Number of lead applicant
419-995-8200

Email Address of lead applicant
mccurdy.d@rhodesstate.edu

Community School Applicants: After your application has been submitted and is in Authorized Representative Approved status an email will be sent to your sponsoring entity automatically informing the sponsor of your application.

6. Are you submitting your application as a consortium? - Select one checkbox below

☐ Yes

☐ No

If you are applying as consortium, please list all consortium members by name on the "Consortium Member" page by clicking on the link below. If an educational service center is applying as the lead applicant for a consortium, the first consortium member entered must be a client district of the educational service center.

Add Consortium Members

7. Are you partnering with anyone to plan, implement, or evaluate your project? - Select one checkbox below

☐ Yes

☐ No

If you are partnering with anyone, please list all partners (vendors, service providers, sponsors, management companies, schools, districts, ESCs, IHEs) by name on the "Partnering Member" page by clicking on the link below.

Add Partnering Members

B) PROJECT DESCRIPTION - Overall description of project and alignment with goals

8. Describe the innovative project: - Provide the following information

The response should provide a clear and concise description of the project and its major components. The following questions will address specific outcomes and measures of success.

a. The current state or problem to be solved; and

Historically, innovations based on science and engineering have powered the U.S. economy, creating good jobs, a high standard of living, and international economic leadership. Yet, as the National Science Board documented in Science and Engineering Indicators: 2012, "the nation's global share of industries focused on science, technology, engineering, and mathematics (the group widely known as STEM) is in decline." Consequently, the nation is not able to produce enough STEM workers domestically in key fields. This is quite evident within the population of Northwest Ohio where advanced manufacturing opportunities are becoming increasingly more prevalent but there is a distinct lack of a STEM educated workforce to meet industry needs. Increasing the quantity and quality of Northwest Ohio high school graduates well-versed in STEM disciplines and corresponding employment fields will be an important component to an Ohio innovation-based competitiveness strategy. The labor market information for Northwest Ohio projects that there will be 110,120 jobs in science, technology, engineering, math, and medical (STEMM) related fields in 2022. Over the ten-year period, there will be a 12.84% increase in the number of STEMM related jobs. The largest numbers of these jobs are in nursing, industrial maintenance, advanced manufacturing, and allied health specialties. These occupations are all in fields where RSC has strong academic programs. RSC has an excellent working relationship with area employers resulting in over 90% of RSC graduates securing employment in Ohio.
b. The proposed innovation and how it relates to solving the problem or improving on the current state.

The I-STEM Pathway will improve student achievement by transforming curriculum at Bath and Allen East high schools into a STEM-focused curriculum that provides college credit in the Core Disciplines (English, Mathematics, Social/Behavioral Science, Natural/Physical Science, Arts/Humanities, Communications). The I-STEM Pathway is modeled after the Early College High School (ECHS)/Dual Enrollment (DE) best practice. The curricular plan uses a progressive-integration model that provides essential foundational courses through standard high school credits which progressively are replaced with RSC's university-parallel courses approved for transfer by the Ohio Board of Regents' Ohio Transfer Module (OTM) or Transfer Assurance Guides (TAG) systems. Instruction will be predominately delivered by credentialed high school faculty as well as RSC faculty when necessary; funding will pay for discipline specific graduate courses to help credential district faculty; stipends will be paid for curricular development. The five-year plan establishes a strong foundation for a sustainable I-STEM Pathway program. I-STEM Pathway Support includes (a) Faculty Credentialing, (b) Academic Success Coaching, (c) a Parent Support Group, (d) an Industry Advisory Group, and (e) STEM-Up Summer Enrichment. Faculty credentials will be identified or scholarships will be awarded to district faculty for graduate studies in the discipline required. A Coordinator will be hired to form the RSC support structures, Industry Advisory Group and Parent Support Group, and begin promotion of the Pathway. The Academic Success Coach will be hired to develop the parent support group and work with guidance counselors to develop the student Individual Education Plan (IEP) process. Equipment will be ordered for a STEM Classroom (videoconferencing, calculators, computers, Chrome books, online tutorials, learning simulation tools) and labs will be upgraded for STEM-related coursework. The Academic Success Coach will assess each student's entry and ongoing level of preparation via ACT College Readiness Assessment and ACT-COMPASS; assist in creating IEPs and engage students in tutorials, supplemental instruction, and college preparation skills embedded within the curricular schedule across grades 9-12. Curricular experiences will be enhanced via team building projects in grades 9-11 and a Capstone project (in grade 12), designed for learning/exhibiting abilities to create, evaluate, and analyze. The I-STEM Pathway is focused on helping students in the academic mid-range, rather than to students already capable of taking college courses. Parent Support Group volunteers, trained to assist with tutoring, will receive points for hours worked leading to RSC course scholarships based on points accrued. Scholarships can be used by the parent or an I-STEM Pathway program graduate of their choosing. The Coordinator will manage services/programs delivered by the high schools, RSC and advisory groups. An Industry Advisory Group will provide opportunities for application of student learning in out-of-class experiences, guest speakers, and STEM-UP workplace experiences, engagement in I-STEM Pathway program evaluations, and connection with other industry partners to increase resources for the program. College preparation strategies will include: (1) STEM-Up summer enrichments for pre-entry interventions based on grade 8 ACT-COMPASS assessment and to augment academic preparation for grades 9-11; (2) workshops for goal-setting, Study Skills, STEM Technology, Social/Behavioral Interaction, Career Planning; and (3) individualized tutoring.

9. Select which (up to four) of the goals your project will address. For each of the selected goals, please provide the requested information to demonstrate your innovative project. - (Check all that apply)

a. Student achievement

i. List the desired outcomes.

Examples: fewer students retained at 3rd grade, increase in graduation rate, increased proficiency rate in a content area, etc.

The focus for student achievement in the I-STEM Pathway will be retention, graduation, and college matriculation. Upon completion of high school, students will graduate with a high school diploma (Bath or Allen East), and up to 62 hours of college credit for either an Associate of Science or Associate of Applied Science degree. The partner high school districts will see an increase in overall retention, graduation, and college matriculation rates when compared to non-I-STEM Pathway students. Retention. Students will receive intervention services from Academic Success Coaching weekly, Parent Support Group monthly and Industry Advisory Group quarterly. Each school will benefit from an increased number of college credentialed faculty to allow students to remain on the high school campus. A videoconferencing option to share credentialed faculty across educational partners will allow for additional STEM course offerings. Graduation. With the I-STEM Pathway program focused on the Core Disciplines and an early intervention strategy, the number of students requiring remedial assistance will be reduced. Through the annual use of ACT College Readiness Assessment and COMPASS, I-STEM Pathway students will have their math, reading and other academic and career readiness skills, assessed in grade 8, prior to 9th grade enrollment in the I-STEM Pathway. Additional assessments in grades 9-11 will lead to prescribed interventions ensuring a clear pathway toward high school graduation as well as successful completion of transfer level coursework in the Core Disciplines. Matriculation. A higher number of students will complete high school with transfer level courses in the Core Disciplines which will lead to a higher completion of degrees in STEM or other academic majors. The STEM curricula focus will produce a greater number of students who will pursue a STEM related bachelor's or associate degree leading to expected employment in higher wage/skilled positions.

ii. What assumptions must be true for this outcome to be realized?

Examples: early diagnosis and intervention are needed to support all children learning to read on grade level; project-based learning results in higher levels of student engagement and learning, etc.

A strong correlation exists between Dual Enrollment (DE) programs and academic achievement in post-secondary success (Community College Research Center, 2013; US Department of Education, 2007). The Early College High School (ECHS) model is among DE best practices. A national study focused on the impact of ECHS (AIR, 2013) found that compared to similar students, ECHS students were significantly more likely to enroll in college (80.7% vs. 70.7%); enroll in a 4-year college (53.3% vs. 46.3%); earn a college degree (25% vs. 5%); and showed the highest impact demonstrated for minority and low income students. In New York and North Carolina ECHS districts, students enroll in and complete up to 1 year of college credits, are better prepared and more likely to go on to college than similar students. Ohio's ECHS also show substantial results (96% graduation rate, 79% earn at least one year of college credit, 95% continue college enrollment, 87.5% pursue baccalaureate degrees).

iii. Describe any early efforts you have made to test these assumptions (pilot implementation, etc), or how these are well-supported by the literature.

The I-STEM Pathway program mirrors Early College High School through progressively-integrated curriculum, embedded college readiness support and external involvement. Opportunities for high school students to achieve college credit have been increasingly successful at RSC through Project Lead the Way (PLTW) and Early College High School/Dual Enrollment (ECHS/DE). PLTW courses, in place since 2005, lead students toward an Applied Science degree. In 2013, 70 students (4.7 credit hour average) had a 94.5% success rate. ECHS/DE, primarily focused on transfer credits, enrolled 1,070 students; was taught by 855 credentialed high school faculty at 26 home high schools, with a growing interest of parents and high schools. In 2014, 96.6% of RSC's ECHS/DE students completed courses,
but, historically underserved students were minimally enrolled. Today, nearly 2000 high school students are in enrolled in ECHS/DE, and the College is working to double the number of credentialed high school faculty. The I-STEM Pathway program will facilitate the high-school-to-college transition for a broader range of students than ECHS/DE by preparing more academically mid-range students for college. RSC’s experience with establishing a multi-college consortium through a U.S. Department of Labor grant utilizing instructional technologies such as video-conferencing will foster a sound pedagogical design and enhanced efficiencies.

iv. List the specific indicators that you will use to measure progress toward your desired outcome.

These should be measurable changes, not merely the accomplishment of tasks. Example: Teachers will each implement one new project using new collaborative instructional skills, (indicates a change in the classroom) NOT; teachers will be trained in collaborative instruction (which may or may not result in change).

Rates of I-STEM Pathway year-to-year retention, high school graduation, and college matriculation will exceed comparable rates of non-Pathway students in the respective schools. Rates of I-STEM Pathway vs. non-I-STEM Pathway students graduating with 30 or more transferable college credit hours will be measured, as well. A baseline for the rate of participation in supplemental instruction and student support activities will be established. Yearly improved or sustained numbers of participants in these activities will be achieved. Academy students will achieve a higher level of college readiness than non-I-STEM Pathway students will.

t. What assumptions must be true for this outcome to be realized?

b. Spending reductions in the 5 year forecast

i. List the desired outcomes.

Examples: lowered facility cost as a result of transition to more efficient systems of heating and lighting, etc.; or cost savings due to transition from textbook to digital resources for teaching.

The I-STEM Pathway program will support Ohio’s focus on reducing college expenditures and reducing time to graduation as well as support its Completion Agenda. The Early College High School model results are substantial, but the start-up costs range from $1.4 to $2.2 million. Knowledge Works Foundation funding which off-set the substantial start-up costs for ECHS is no longer available. Grant funds would support the I-STEM Pathway start-up implementation costs as documented in the Year 1 budget.

ii. What assumptions must be true for this outcome to be realized?

Example: transition to “green energy” solutions produce financial efficiencies, etc.; or available digital resources are equivalent to or better than previously purchased textbooks.

With the increased numbers of credential faculty at both Bath and Allen East High Schools a significant cost savings will be realized by both institutions since they are expending large financial sums in order to meet the needs of dual enrollment instruction for their respective student populations. This is particularly true in the areas of STEM disciplines as high school faculty credentialed to dually instruct for institutions of higher education are a rare commodity. Additionally both schools are often forced to send their students off-site to an institution of higher education which increases their respective costs by a reduction/loss in their state appropriated FTE (state foundation money). Finally, the ever-increasing cost of college-text books is greatly impactful on participating dual enrollment high schools as they are required to follow standard college purchasing practices if the courses are being delivered on the college campus. A greater deal of autonomy and flexibility of purchasing textbooks is provided if courses are offered at participating high schools. This leads to a significant reduction in expenditures related to textbook affordability.

iii. Describe any early efforts you have made to test these assumptions (pilot implementation, etc), or how these are well-supported by the literature.

According to the U. S. Department of Education, Office of Elementary and Secondary Education there are several key factors to controlling costs related to dual-enrollment programs. Dual Enrollment adds significant expenses to the traditional high school program, which must be paid by the state, the district, the partnering institution of higher education, or the students. These costs include tuition, textbooks, and transportation, as well as other expenses including college placement tests and lab fees. Programs also must consider the indirect costs of how students’ attendance is calculated. Many of these factors are determined by state policy, but programs still must be resourceful in

v. List and describe pertinent data points that you will use to measure student achievement, providing baseline data to be used for future comparison.

Various datasets will be used to assess student progress and to engineer early interventions on a case-specific basis. The COMPASS exam, administered each year, will establish and monitor student progress in key areas of performance enabling quantitative benchmarks and interim measures. Baseline competencies will be created and used to effectively evaluate individual progress on individualized education plans. Early exposure to the first year experience course will enable students to develop a toolbox to facilitate success and will be supplemented by the tutoring and training provided by Pathway staff. Success in subsequent courses will provide measured milestones to completion of at least 30 semester hours of college work. Students will complete all mandated district tests and will be funded to take the ACT College Readiness Assessment and ACT-COMPASS in grades 8-11 to allow additional tracking of student progress and readiness. Completion of a STEM degree (Associate of Science or Applied Science) or matriculation into college to complete said degree will be monitored. Process and outcome evaluation are both quantitative and qualitative in nature, and is intended to assess grant projects using formative and summative assessment. The process and outcome evaluative data will be analyzed to answer the overarching question: What difference has the I-STEM Pathway made in lives of its students? To help answer the overarching question, five (5) evaluative questions which reflect both formative evaluation-accountability factors of I-STEM Pathway implementation-and summative evaluation-the impact or difference the project is making on students, industry and the overall region.

vi. How are you prepared to alter the course of your project if assumptions prove false or outcomes are not realized?

Should expected outcome measures not correspond to actual attained data the various support networks will be reevaluated through the Office of Institutional Effectiveness for impact on student achievement. A plan for improving the outcomes will be developed and implemented by the Implementation Team. As part of the evaluation design, the grant evaluation team will review the information gathered during various phases of the project to conduct an analysis of both process and outcome information. Rhodes State will conduct a longitudinal analysis of the impact of the I-STEM Pathway by evaluating data at grant-specific designated timeframes (i.e. weekly, monthly, quarterly, or annually). Additionally, the project coordinator will compile summary reports after collection of the designated data for review by the Implementation Team. Based upon these final reports, the Implementation Team will determine the overall effectiveness of the I-STEM Pathway; providing insights for subsequent years or make a recommendation to terminate (if warranted) of the continuance of grant activities.

According to the U. S. Department of Education, Office of Elementary and Secondary Education there are several key factors to controlling costs related to dual-enrollment programs. Dual Enrollment adds significant expenses to the traditional high school program, which must be paid by the state, the district, the partnering institution of higher education, or the students. These costs include tuition, textbooks, and transportation, as well as other expenses including college placement tests and lab fees. Programs also must consider the indirect costs of how students’ attendance is calculated. Many of these factors are determined by state policy, but programs still must be resourceful in
how they pay for the various elements of Dual Enrollment. Tuition Tuition is the largest expense associated with Dual Enrollment courses. Nationally, six states pay tuition for dual enrollees (ECS, 2008g). Fifteen states require districts to pay tuition on behalf of dual enrollees, or the state or colleges waive tuition for dual enrollees. In 22 states, students are required to pay tuition, and a few states make no provision for tuition, leaving it to local institutions to determine whether to pass this cost on to students (Karp et al., 2005). A strategy that significantly lowers the cost of tuition is to offer Dual Enrollment courses on high school campuses taught by high school teachers. If classes are taught during the school year and are part of the teachers' workload, districts typically do not incur any additional salary costs for the teachers. Textbooks Although covering tuition is the most significant challenge in providing Dual Enrollment courses, Dual Enrollment programs also have a particularly difficult time financing college textbooks. States typically do not fund textbooks, with only 12 states explicitly addressing textbook cost issues in policy. Among those, three require students to cover these costs, six require either the district or college to pay some portion, and three provide some state grant funds to programs or students to offset textbook costs (WICHE, 2006).

Districts that choose to or are mandated to cover textbook costs for dual enrollees do so at notable and ongoing expense. Where programs do not cover textbook costs, requiring students to do so could drastically reduce participation, particularly among traditionally underrepresented students who are less affluent. Student Attendance In addition to tuition and transportation costs, practitioners must consider the attendance issues associated with students taking college courses rather than high school classes. Based on structures outlined in state policy, several scenarios are common: (1) both the high school and the college receive state Average Daily Attendance (ADA) and Full Time Equivalency (FTE, i.e., the equivalent of a student's full time participation) funds, respectively, for a student's attendance in a Dual Enrollment course; (2) Only the college receives FTE funding for the student's actual time in the Dual Enrollment class; and (3) A proportional formula splits the reimbursement, where the high school receives percentage of ADA funds for the time a student spends at the high school (i.e., The district would lose some portion of ADA for students' time in college classes during the school day) and the college receives

TABLE (FIT).

These should be specific dollar savings amounts. THESE MUST MATCH THE COST SAVINGS AS PROJECTED IN THE FINANCIAL IMPACT

<table>
<thead>
<tr>
<th>1. The Bath Local School District and the Allen East School District will spend approximately $13,000 and $22,000 respectively this year on Dual Enrollment (DE) partnerships with private institutions. With the I-STEM Pathway project in place, both institutions will replace the respective private institution courses with Rhodes State College courses thus eliminating this cost completely.</th>
<th>These should be specific dollar savings amounts. THESE MUST MATCH THE COST SAVINGS AS PROJECTED IN THE FINANCIAL IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Delivering a myriad of students to areas higher education campuses to take DE courses costs between $100,000 and $120,000 per year. There will be an anticipated retention of approximately one third of those students through this program thus saving approximately $30,000 annually for the Bath Local School District.</td>
<td></td>
</tr>
<tr>
<td>3. With the cost of college textbooks through the DE program escalating, Bath and Allen East will spend over $30,000 this year alone. An anticipated saving of about one third of this amount should be realized as the cost of textbooks for on-site courses is much easier to control thus saving the Bath Local School District $6,500 and the Allen East School District $10,000 annually.</td>
<td></td>
</tr>
</tbody>
</table>

iv. List the specific indicators that you will use to monitor progress toward your desired outcome.

These should be specific dollar savings amounts. THESE MUST MATCH THE COST SAVINGS AS PROJECTED IN THE FINANCIAL IMPACT

<table>
<thead>
<tr>
<th>1. The Bath Local School District and the Allen East School District will spend approximately $13,000 and $22,000 respectively this year on Dual Enrollment (DE) partnerships with private institutions. With the I-STEM Pathway project in place, both institutions will replace the respective private institution courses with Rhodes State College courses thus eliminating this cost completely.</th>
<th>These should be specific dollar savings amounts. THESE MUST MATCH THE COST SAVINGS AS PROJECTED IN THE FINANCIAL IMPACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Delivering a myriad of students to areas higher education campuses to take DE courses costs between $100,000 and $120,000 per year. There will be an anticipated retention of approximately one third of those students through this program thus saving approximately $30,000 annually for the Bath Local School District.</td>
<td></td>
</tr>
<tr>
<td>3. With the cost of college textbooks through the DE program escalating, Bath and Allen East will spend over $30,000 this year alone. An anticipated saving of about one third of this amount should be realized as the cost of textbooks for on-site courses is much easier to control thus saving the Bath Local School District $6,500 and the Allen East School District $10,000 annually.</td>
<td></td>
</tr>
</tbody>
</table>

vi. How are you prepared to alter the course of your project if assumptions prove false or outcomes are not realized?

An annual budgetary review and cost analysis will inform all participants of expenditures and potential cost savings. If the anticipated cost savings are not realized, a re-evaluation of the expenditures detailed in the grant proposal will be convened. The potential to reassess expenditures at that time may dictate a re-alignment of funds with consultation form the granting organization.

c. Utilization of a greater share of resources in the classroom

i. List the desired outcomes.

Example: change the ratio of leadership time spent in response to discipline issues to the time available for curricular leadership.

RSC will hire an I-STEM Pathway Coordinator to develop and manage all aspects of support services/programs; form the Parent Support Group and Industry Advisory Group; and prepare the schedule for the RSC support services functions. A Success Coach will be hired to provide learning and career support in collaboration with the guidance counselors, parents, and RSC staff and faculty; as well as assist with assessments, IEPs, and programmatic interventions for Pathway students. The Pathway Coordinator, Success Coach, Parent Support Group and Industry Advisory will provide I-STEM Pathway students with additional learning and career support. The support from RSC staff and college credentialed faculty will provide higher level academic preparedness, support services and time commitments toward successful completion of transferable general education courses leading to either an Associate of Science into a baccalaureate STEM pathway or an Associate of Applied Science leading to a 2-year STEM degree. A STEM-equipped classroom and labs will add to the new and replacement resource needs of the high school learning environment. Videoconferencing will provide the opportunity to share credentialed faculty across educational partners. The Industry Advisory Group will help to identify additional resources from community industries. The integrated-progressive curricular design, coupled with embedded supplemental instruction, support services, and programs, will add a great depth of resources for the Pathway students.

ii. What assumptions must be true for this outcome to be realized?

Examples: improvements to school and classroom climate will result in fewer disciplinary instances allowing leadership to devote more time to curricular oversight.

An integrated approach to grades 9-12 STEM teaching and learning has the potential to impact all 9-12 STEM education. Creating a comprehensive and integrated dual-enrollment based STEM education system inclusive of support systems and personnel will have a significantly impact on the following: - Measurable increases in student achievement - Creating the next generation of STEM professionals - Affectively positive assessment of STEM subjects as motivating, exciting, and interesting to students - Better preparation of students for the
iii. Describe any early efforts you have made to test these assumptions (pilot implementation, etc), or how these are well-supported by the literature.

Review of the literature on formal K-12 integrated STEM education provides the following insights: - Many different conceptions of curriculum integration exist - Much of the existing literature focuses on the potential symbiotic relationships between science and math, but tension exists between arguments for integrating science and math, and the perceived need to maintain the philosophical, methodological, and historical differences between the two subjects - There are a wide range of rationales used to promote and defend integrated curricula - There is a modest body of empirical evidence suggesting that students in integrated settings do as well academically, if not better, than students who study the subjects separately - Research does suggest that the study of engineering can provide contexts that enrich science and math in ways that improve student achievement in these disciplines. One critical issue that will need to be addressed prior to widespread implementation of effective integrated STEM programs is a shortage of K-12 teachers who are adequately prepared to teach STEM content, concepts, and skills using an integrated approach. This is especially true for engineering content and practices, which historically have not been included as part of K-12 teacher preparation. In order to incorporate engineering as a part of an integrated STEM experience, K-12 educators, and the college and university faculty who prepare them, will need to interact with colleagues in other disciplines to rethink and repackage traditional content in science, math, or technology, in order to apply these subjects toward engineering design. Basically, teachers need to be exposed to, understand, and experience first-hand, integrated STEM in order to be proficient in teaching in an integrated manner. Daugherty's 2009 article, which was based on five case studies of mature programs (Engineering the Future, Project Lead the Way, Mathematics Across the Middle School MST Curriculum Project, The Infinity Project, and INSPIRES), raised several issues that should be addressed when designing and evaluating integrated STEM professional development. She noted that the projects did not employ comprehensive evaluation plans that account for multiple stakeholders, including carrying through to measure impacts on student learning. A consistent assumption of the projects was that "good curriculum" translates to "good professional development" and "good teaching", which has not been strongly demonstrated through research. On the other hand, across the projects there was an emphasis on active engagement and collaborative learning, which does align with the research literature.

iv. Please provide the most recent instructional spending percentage (from the annual Ohio School Report Card) and discuss any impact you anticipate as a result of this project.

Note: this is the preferred indicator for this goal.

The instructional spending percentage (CRI) for the Allen East Local School District is 64.3% and Bath Local School District is 65.8%. The Bath Local School District and the Allen East School District will realize a cost savings from reduction of transporting students to institutions of higher education and maintaining their status as taught on the high school campus grounds. Base-line expectation for savings is $30,000 annually. As a result of this projected savings in a non-instructional area, we anticipate that the CRI for both school districts will increase slightly.

v. List any additional indicators that you will use to monitor progress toward your desired outcome. Provide baseline data if available. These should be specific outcomes, not just the accomplishment of tasks. Example: fewer instances of playground fighting.

As mentioned previously there are several assumptions regarding student academic progress and affective feeling toward subject matter contained within the construct of the I-STEM Pathway. As the program progresses, the following indicators will be monitored: - Student achievement outcomes in STEM subjects - The number of students professing an interest in STEM related professions - Students belief systems that STEM subjects are motivating, exciting, and interesting - Workforce members represented in the Advisory Group believe that students in the I-STEM Pathway are better prepared for the workforce.

vi. How are you prepared to alter the course of your project if assumptions prove false or outcomes are not realized?

Should the anticipated outcomes not be realized, the various support networks and service provisions will be reviewed for potential alteration and adjustment. If and when such adjustments are made to the overall I-STEM Pathway design, new or updated outcomes will be reevaluated.

d. Implementing a shared services delivery model

i. List the desired outcomes.

Examples: increase in quality and quantity of employment applications to districts; greater efficiency in delivery of transportation services, etc.

The advent of the Straight A Grant and its specific funding support to assist and expand the number of teachers participating in the faculty credentialing process will greatly increase student access to STEM college course sections offered at the high school setting in West Central Ohio; specifically, at partnered schools in the region which include Allen East and Bath high schools.

ii. What assumptions must be true for this outcome to be realized?

Example: neighboring districts have overlapping needs in administrative areas that can be combined to create efficiencies.

As a result of this grant project, RSC anticipates a total increase of 18 newly credentialed faculty within Bath Local High School and Allen East High School between August 2016 and August 2018. The infusion of these additional resources into the dual enrollment teaching stream will impact over 200 students who will be able to complete coursework under the instruction of those individuals.

iii. Describe any early efforts you have made to test these assumptions (pilot implementation, data analysis etc), or how these are well-supported by the literature.

RSC is an accredited, public two-year, post-secondary institution in Lima, Ohio, which offers over 75 certificates and applied associate degree programs in Business and Public Service, Nursing, Allied Health, and Engineering and Information Technologies; as well as the Associate of Arts and Associate of Science Degrees. Over 5,000 students enroll annually and are served by these divisions, with 3,657 students enrolled for 2015 Fall Semester. In recent years offering dual enrollment opportunities at the regions high schools is a focused initiative for RSC as the cost of college education continues to increase nationally; and national data shows students focused on a specific pathway early in their education are more likely to complete a college degree. This focused effort resulted in a nearly 200% increase in students participation from 2011 to 2015. RSC maintains a comprehensive listing of courses which could be offered at the high school which generated collaboratively with school administration. As of November 2015 a total of 1969 students are enrolled in 217 sections of college credit courses taught by 93 credentialed instructors at 50 high schools averaging 4.4 credits per student. Another 134 instructors did not have the required credential for which they applied for credential approval. A comprehensive review of the non-credentialed high
school teachers identified the following subject areas mostly in the Arts and Sciences disciplines of English Composition, Sciences, History, Math and Spanish.

iv. List the specific indicators that you will use to monitor progress toward your desired outcomes.
These should be measurable changes, not the accomplishment of tasks.

Example: consolidation of transportation services between two districts.

The Bath and Allen East High School administrators have provided RSC with a list of STEM courses they plan to seek college credit for as part of this proposal; and the corresponding number of instructors who plan to seek the appropriate credential starting Fall 2016. RSC will meet with partner schools administrators and instructors promoting this opportunity for advancement in their careers. Also RSC Deans are currently preparing to meet with those instructors and design an approved Instructor-College Plan of Study beginning August 2016. Once the approved plan of study is on file within the College's Office of Academic Affairs, that relevant course will be placed on the upcoming term schedule as early as Fall 2016. The College will notify partner school administration and contact each instructor for their planned start date. Every month starting in August 2016, RSC will contact the identified instructor by email, phone or in person to get an updated status of completion. RSC will provide a status report monthly to partner administrators. If any partner school instructor does not follow their outlined plan of study and funding still exists, that partner can allow another instructor the opportunity to utilize this grant funding to complete their education. If no other instructor from that particular school is interested in seeking a credential, then RSC will offer that funding to the other partner school. As long as the partner instructor continues to further their education and provide documented evidence of successful course completion at end of each term, RSC can conditionally approve those sections as college credit sections for students. Those documents will be maintained in the College's Office of Academic Affairs. The OAA is responsible for monitoring completion of the plan of study.

v. List and describe pertinent data points that you will use to evaluate the success of your efforts, providing baseline data to be used for future comparison.

Example: change in the number of school buses or miles travelled.

With the advent of the Straight A Grant, RSC will be able to build a more robust and complete team of credentialed faculty members serving a population of I-STEM Pathway focused students. This will allow the College to more adequately meet the needs of our secondary school partners and the students we both respectively serve. Sustainability planning will be conducted throughout the grant project. All practices within the Faculty Credentialing process will be continuously evaluated in terms of progress to degree completion by the designated timeframe articulated in the grant. RSC will continually evaluate expenses throughout the grant period, ensuring responsible application of all allocated resources. Assessment of the Faculty Credentialing component of the Straight A Grant will be very pragmatic in scope. The number of increased faculty participating in the College Credit Plus and the resultant I-STEM Pathway program as credentialed RSC employees will be reviewed. A Final performance report will be submitted outlining all of the Faculty credentialing activities and the corresponding number of teachers fully credentialed and their respective subject disciplines. A profile of all the participating secondary school teachers and their particular school districts will be included in addition to a comprehensive evaluation of the overall credentialing process and a final examination of the long-term impact of the increase in credentialed faculty on their schools and the students they serve.

vi. How are you prepared to alter the course of your project if assumptions prove false or outcomes are not realized?

Should the I-STEM Pathway program fail to credential the requisite 18 STEM discipline focused teachers as fully recognized Rhodes State faculty members, the potential exists to offer the I-STEM Pathway courses on the Rhodes State College campus taught respectively by full-time RSC faculty. Although this is not the preferred modality of the subject delivery system laid out within the I-STEM Pathway program, RSC does have significant experience teaching dual enrollment courses on the Rhodes State campus instructed by full-time staff.

10. Which of the following best describes the proposed project? - (Select one)

- a. New - Never before implemented
- b. Existing - Never implemented in your community school or school district but proven successful in other educational environments
- c. Replication - Expansion or new implementation of a previous Straight A Project
- d. Mixed Concept - Incorporates new and existing elements
- e. Established - Elevating or expanding an effective program that is already implemented in your district, school or consortia partnership

C) BUDGET AND SUSTAINABILITY

11. Financial Information: - All applicants must enter or upload the following supporting information. The information in these documents must correspond to your responses in questions 12-19.

a. Enter a project budget in CCIP (by clicking the link below)

Enter Budget

b. If applicable, upload the Consortium Budget Worksheet (by clicking the Upload Documents link below)

c. Upload the Financial Impact Table (by clicking the Upload Documents link below)

Upload Documents

The project budget is entered directly in CCIP. For consortia, this project budget must reflect the information provided by the applicant in the Consortium Budget Worksheet. Directions for the Financial Impact Table are located on the first tab of the workbook. Applicants must submit one Financial Impact Table with each application. For consortium applications, please add additional sheets instead of submitting separate Financial...
12. What is the amount of this grant request?

13. Provide a brief narrative explanation of the overall budget. Responses should provide a rationale and evidence for each of the budget items and associated costs outlined in the project budget. In no case should the total projected expenses in the budget narrative exceed the total project costs in the budget grid.

The College will use the grant award to cover the following items during FY15: *Salaries and Wages (100) $38,000 full-time Pathway Coordinator; $32,000 full-time Academic Success Coach and $112,320 for four part-time adjunct instructors at a wage rate of $27; *Employee Retirement and Fringe Benefits (200) $42,393 at a rate of 35% for full-time and 16% for part-time employees. *Purchased Services (400) $48,800 H. S. teacher graduate tuition for Summer, Fall and Spring 2016; $8,000 H.S. & College Integrated Progressive Career Development; $8,541 tutorial training development-online; $15,000 professional consulting services; $2,000 assessments for 50 students, COMPASS and Residual; $4,037 STEM-up summer staff, 2 academic advisors; $7,200 STEM-up summer staff, 2 administrators; $40,000 equipment (lab) and software maintenance. *Supplies (500) $1,000 Industry Advisory Group food and materials, 10 meetings; $1,200 Parent Support Group start-up food and materials, 6 meetings; $1,200 STEM-up summer enrichment programs food and materials; $2,400 duplication, office and misc. supplies; $26,400 TI 84+ calculators for math and physics (220 calculators *$120); $40,000 biology and A&P supplies; $20,000 chemistry supplies; $20,000 physics supplies; $11,000 student textbooks in preparation for summer STEM-up; $97,250 computer equipment (220 Chromebooks * $300) + (25 laptops * $1,250); $10,000 computer software. *Capital Outlay (600) $10,000 Smart Boards (2*$5,000); $126,000 video conferencing, outfitting one room at each school location to allow sharing a credentialed teacher among locations (3*$42,000)...

14. Please provide an estimate of the total costs associated with maintaining this program through each of the five years following the initial grant implementation year (sustainability costs). This is the sum of expenditures from Section A of the Financial Impact Table.

<table>
<thead>
<tr>
<th>Cost Category</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Sustainability Year 1</td>
<td>241,150.00</td>
</tr>
<tr>
<td>b. Sustainability Year 2</td>
<td>241,150.00</td>
</tr>
<tr>
<td>c. Sustainability Year 3</td>
<td>241,150.00</td>
</tr>
<tr>
<td>d. Sustainability Year 4</td>
<td>241,150.00</td>
</tr>
<tr>
<td>e. Sustainability Year 5</td>
<td>241,150.00</td>
</tr>
</tbody>
</table>

15. Please provide a narrative explanation of sustainability costs. Sustainability costs include any ongoing spending related to the grant project after June 30, 2017. Examples of sustainability costs include annual professional development, staffing costs, equipment maintenance, and software license agreements. To every extent possible, rationale for the specific amounts given should be outlined. The costs outlined in this narrative section should be consistent and verified by the financial documentation submitted and explained in the Financial Impact Table. If the project does not have sustainability costs, applicants should explain why.

This project will have an annual recurring cost of $241,150 after FY16-17 implementation for FY18 to FY22 on the Financial Impact Template. These costs include: *Salaries and Wages (100) $38,000 full-time Academy Coordinator; $32,000 full-time Academy Success Coach and $112,320 for four part-time adjunct instructors at a wage rate of $27; *Employee Retirement and Fringe Benefits (200) $42,393 at a rate of 35% for full-time and 16% for part-time employees. *Purchased Services (400) $4,037 STEM-up summer staff, 2 academic advisors; $7,200 STEM-up summer staff, 2 administrators; $4,000 assessments for 100 students, COMPASS and Residual ACT materials. *Supplies (500) $1,200 STEM-up summer enrichment programs food and supplies.

16. What percentage of these costs will be met through cost savings achieved through implementation of the program?

Total cost savings from section B of the Financial Impact Table divided by total sustainability cost from section A of the Financial Impact Table. If the calculated amount is greater than 100, enter 100 here.

34.00

17. Please explain how these cost savings will be derived from the program.

Applicants who selected spending reductions in the five-year forecast as a goal must identify those expected savings in questions 16 and 17. All spending reductions must be verifiable, permanent, and credible. Explanation of savings must be specific as to staff counts; salary/benefits; equipment costs, etc.

Videoconferencing is expected to save the cost of an instructor who may teach a small class of students and enable that same instructor to teach a full class of 25 by drawing students from both schools to be taught by the same instructor. As previously mentioned, 1. The Bath Local School District and the Allen East School District will spend approximately $35,000.00 this year on College Credit Plus (CCP) partnerships with private institutions. With the I-STEM Pathway project in place, both organizations will replace the respective private institution courses with Rhodes State College courses thus eliminating this cost completely. 2. Delivering a myriad of students to areas higher education campuses to take CCP courses costs between $100,000 and $120,000 per year. There will be an anticipated retention of approximately one third of those students between both high school campuses through this program thus saving approximately $50,000.00 annually. 3. With the cost of college textbooks through the CCP program escalating, Bath and Allen East will spend over $16,500 this year alone. An anticipated saving of about one third of this amount should be realized as the cost of textbooks for on-site courses is much easier to control thus saving the two schools about $10,000.00 annually.

66.00

18. What percentage of sustainability costs will be met through reallocation of savings from elsewhere in the general budget?

Total reallocation from section C of the Financial Impact Table divided by total sustainability cost from section A of the Financial Impact Table Note: the responses to questions 16 and 18 must total 100%

19. Please explain the source of these reallocated funds.

Reallocation of funds implies that a reduction has been made elsewhere in the budget. Straight A encourages projects to determine up front what can be replaced in order to ensure the life of the innovative project.

Sustainability of the I-STEM Pathway program will be designed around ongoing collaboration between educational, family and community...
partners. The program will facilitate awarding both a high school diploma and up to 62 hours of transferable college credit toward an Associate of Science or Associate of Applied Science degree. The I-STEM Pathway promotes student achievement on a cost efficient basis. It is anticipated that the I-STEM Pathway will be self-sustaining by the end of the fourth year of coursework for the first classes.

D) IMPLEMENTATION

20. Please provide a brief description of the team or individuals responsible for the implementation of this project, including other consortium members or partners.

This response should include a list of qualifications for the applicant and others associated with the grant. Please list key personnel only. If the application is for a consortium or a partnership, the lead should provide information on its ability to manage the grant in an effective and efficient manner. Include the partner/consortium members' qualifications, skills and experience with innovative project implementation and projects of similar scope.

Enter Implementation Key Personnel information by clicking the link below:

Add Implementation - Key Personnel

For Questions 21-23 please describe each phase of your project including its timeline, and scope of work.

A complete response to these questions will demonstrate awareness of the context in which the project will be implemented and the time it will take to implement the project with fidelity. A strong plan for implementing, communicating and coordinating the project should be apparent, including coordination and communication in and amongst members of the consortium or partnership (if applicable). Not every specific action step need be included, but the outline of the major steps should demonstrate a thoughtful plan for achieving the goals of the project. The timeline should reflect significant and important milestones in an appropriate time frame.

21. Planning

a. Date Range 1/16 - 8/17

b. Scope of activities - include all specific completion benchmarks.

| January-April 2016: Phase 1: RSC planning meetings Phase 2: Researched best practice models, area high schools and community demographic and descriptive data Phase 3: Identification/engagement/partnership development for IAG. Modeling for an incentivized PSG Phase 4: Provided high schools with executive summary/goals of I-STEM Grant; meetings and phone calls to discuss proposal; curricular schedule sequence draft prepared June 2016-August 2017: Phase 5: Refine Curriculum aligning Ohio graduation standards with RSC curriculum; alignment of scheduling sequence for college courses with high school bell schedules. high school faculty credentialing and graduate study opportunities Phase 6: COORD/ASC job descriptions developed, positions posted, hired, and trained; design of structures and programs; COORD collaborates with RSC service providers/faculty, the district, IAG and PSG integrating services and programming elements into curricular structure. ASC develops assessments, pre-entry STEM-Up summer enrichment components, workshops; ASC and guidance counselors develop IEPs Phase 7: Student Support Services discussed with the COORD, ASC, RSC staff and IAG. Eligibility requirements/selection criteria decided, academic potential, interest, and motivation Phase 8: Detailed timeline created by the COORD in collaboration with RSC and high school faculty, ASC, Principals/Superintendents, IAG and PSG; timeline distributed to partners; timeline used to monitor progress, avoid delays and ensure calendar alignment of constituents; equipment/lab supplies ordered Phase 9: COORD works with the PSG, RSC and school administrators to promote and recruit grade 8 students to I-STEM Pathway Phase 10: Grade 8 students assessed/selected/enrolled for Pathway and STEM-Up Summer enrichment; IEPs and interventions identified for educational plans Phase 11: Enrollment Barriers-Enrollment of High School Faculty in discipline specific graduate work in 2016.

22. Implementation(grant funded start-up activities)

a. Date Range 7/16 - 3/17

b. Scope of activities - include all specific completion benchmarks

RSC will identify the high school faculty who are or can be credentialed. Lacking high school faculty, RSC faculty will be identified. Instructional plan, tools, curriculum and professional development will be established for Academy instructors. Promotional communication to students and parents will be coordinated with the middle schools for presentations to 7-8 grade staff, parents and students. Constituent communications include emails, letters, pamphlets, social media and 2 informational meetings (July-August 2016) A Pathway team (Bath/Allen East Senior staff, RSC staff, including Coordinator and Success Coach, Parent Support and Industry Advisory partners) will be formed and meet twice to determine selection criteria for Fall 2016 Pathway students (October 2016). A mandatory parent informational meeting for students applying will be conducted and teacher recommendations collected for Pathway applicants. Families will receive and complete Application/Registration Worksheets and all I-Stem Pathway forms (personal information, release of records). Coordinator and Success Coach will oversee applicant activities, including assessments (January-February 2017). Pathway enrollment is confirmed. Mandatory student/parent orientation for Pathway freshman facilitated and includes external industry involvement for experiential learning demonstration. Coordinator/Success Coach engage students in the preparation of individual IEP and support structures (tutoring, summer enrichment programs, workshops, online learning tools, test taking preparation tools, additional learning enhancements). Academic plans using the progressive-integration model will be put in place for each student. Final phases of curriculum refinement will be imbedded into Pathway's academic structure (March 2017). Milestones: Pathway Team meetings held biannually for budget planning, curriculum refinement, STEM-up, learning intervention enhancements, and to monitor the Pathway project outcomes.

23. Programmatic Sustainability (years following implementation, including institutionalization of program, evaluation and communication of program outcomes)

a. Date Range 7/21 - 6/24
b. Scope of activities - include all specific completion benchmarks

Once the I-STEM Pathway has become operationalized the continuation of the program is secure in the commitment of the College administration and local funding will be identified through the Rhodes State’s budgetary process in order to continue support beyond the grant period. As part of the I-STEM Pathway operational activities, periodic meetings are scheduled with the Grant Manager, Business Office Staff, Grants Office Staff and VPIE to monitor progress of grant activities and budget. As a member of the President's Cabinet, the VPIE reports ongoing progress to the President and Cabinet at their established meetings. During the President's update to the Board of Trustees at its monthly meetings, any relevant information regarding the grant would be shared at that time. In addition, each semester, an All Grants meeting is hosted by the Grants Office to inform additional internal stakeholders of all grant activity current underway at the College.

E) SUBSTANTIAL IMPACT AND LASTING VALUE

24. Describe the expected changes to the instructional and/or organizational practices in your institution.

The response should illustrate the critical instructional and/or organizational changes that will result from implementation of the grant and the impact of these changes. These changes can include permanent changes to current district processes, new processes that will be incorporated or the removal of redundant processes. The response may also outline the expected change in behaviors of individuals (changes to classroom practice, collaboration across district boundaries, changes to a typical work day for specific staff members, etc.). The expected changes should be realistic and significant in moving the institution forward.

Please enter your response below:

Implementation of the I-STEM Pathway will result in increased college credits earned by high school students at participating schools. By providing pathways, up to 62 college credits, and an Associate of Science or Associate of Applied Science degree, the I-STEM Pathway will significantly reduce student time to degree if they pursue a baccalaureate degree while assuring they enter the receiving college with one or more years of college credit and no educational debt. Support for credential attainment for dual enrollment faculty will enhance the quality of instruction throughout their teaching load and may obviate the need for the high school to offer costly separate Advanced Placement sections. This partnership also creates a culture of college readiness at participating schools where teachers, administrators, students, and families clearly see a focus on higher education. College/high school collaboration will engage student learners by offering multiple pathways for advanced degree attainment.

25. Please provide the name and contact information for the person and/or organization who will oversee the evaluation of this project.

Projects may be evaluated either internally or externally. However, evaluation must be ongoing throughout the entire period of sustainability and have the capacity to provide the Ohio Department of Education with clear metrics related to each selected goal.

Please enter your response below:

Becky Burrell, Vice President for Institutional Effectiveness, Rhodes State College. Burrell.b@rhodesstate.edu, 419-995-8331

26. Describe the overall plan for evaluation, including plans for data collection, underlying research rationale, measurement timelines and methods of analysis.

This plan should include the methodology for measuring all of the project outcomes. Applicants should make sure to outline quantitative approaches to assess progress and measure the overall impact of the project proposal. The response should provide a clear outline of the methods, process, timelines and data requirements for the final analysis of the project’s progress, success or shortfall. The applicant should provide information on how the lessons learned from the project can and will be shared with other education providers in Ohio. Note: A complete and comprehensive version of the evaluation plan must be submitted to ODE by all selected projects.

The I-STEM Pathway team (led by Becky Burrell, Vice President for Institutional Effectiveness (Burrell.b@rhodesstate.edu, 419-995-8331) will use formative and summative evaluation to determine the impact of the Pathway program. Annual formative assessment results will be reported with a final evaluation at the end of the grant period. Both process and products will be assessed to identify potential improvements throughout the I-STEM Pathway implementation and delivery. Iterative assessment (ACT College Readiness Assessment and ACT-COMPASS or an equivalent assessment tool) in grades 8-11 will assess participants’ preparedness, especially in math and reading skills. Achievement of goals (Question 9) will be monitored via an increase in high school retention, graduation and college matriculation for Academy students and subpopulations vs. the high school rate and rate of the designated sub-populations. Formative assessment measures will be used to determine the effectiveness of implementation strategies - credentialing district faculty; creating STEM facilities and resources; personnel (Coordinator, Success Coach); and integration of industry and parents in the process. Long-term outcomes require review of trending summative outcomes. Graduation rates and college matriculation rates for Academy students will be monitored for 5 years to determine the impact of the Academy when compared to non-participating students. The Coordinator compiles and analyzes data for evaluation. Documentation of the analysis of data collected occurs within the Academy file in the electronic assessment and planning application (e-SIEPS). This application permits determination of standards and measures for identified assessments and provides a means to record the analysis of the data. In addition, this application also provides the means to document actions for improvement based upon the findings of assessment and analysis of data. Using this existing application provides a sustainable practice that is merged into existing workflows at the College thus increasing the likelihood of survivability of the initiative after the grant period. Various datasets will be used to assess student progress and to engineer early interventions on a case-specific basis. The COMPASS exam (or an equivalent assessment tool), administered each year, will establish and monitor student progress in key areas of performance enabling quantitative benchmarks and interim measures. Baseline competencies will be created and used to effectively evaluate individual progress on individualized education plans. Early exposure to the first year experience course will enable students to develop a toolbox to facilitate success and will be supplemented by the tutoring and training provided by Pathway staff. Success in subsequent courses will provide measured milestones to completion of at least 30 semester hours of college work. Students will complete all mandated district tests and will be funded to take the ACT College Readiness Assessment and ACT-COMPASS in grades 8-11 to allow additional tracking of student progress and readiness. Completion of a STEM degree (Associate of Science or Applied Science) or matriculation into college to complete said degree will be monitored. Finally, the cost, savings, and/or additional resources directed to the I-STEM Pathway will be reviewed for sustainability.
27. Please describe the likelihood that this project, if successful, can be scaled-up, expanded and/or replicated. Include a description of potential replications both within the district or collaborative group, as well as an estimation of the probability that this solution will prove useful to others. Discuss the possibility of publications, etc., to make others aware of what has been learned in this project.

The response should provide an explanation of the time and effort it would take to implement the project in another district, as well as any plans to share lessons learned with other districts. To every extent possible, applicants should outline how this project can become part of a model so that other districts across the state can take advantage of the learnings from this proposed innovative project. If there is a plan to increase the scale and scope of the project within the district or consortium, it should be noted here.

The I-STEM Pathway program can be expanded and replicated within other schools in the same manner in which other ECHS models have been replicated. RSC will document: the curricular alignment and integration of 62 hours of transferable college credit content into a delivery schedule; the assessment and intervention strategies that serve the academic, social and behavioral needs of students; the engagement and work of the external advisory structures; and the common elements of the high school Pathway experiences, as well as variations needed to fit the district requirements. As a result of integrating each college and high school course into a single semester-long course, detailed learning outcomes and daily course activities for each dual enrollment course will be created and kept within an electronic shell. The shell will be used to maintain consistency in term to term course instruction. These electronic curricular shells will be created and maintained as open access modules which other educators involved in similar educational partnerships can freely access and model. Thus this academy initiative will produce a sustainable educational product transferrable throughout K-12 and higher education. In addition, because the Ohio Board of Regents Two Year Operating Manual defines a common state-wide template for the general AA and AS degrees, this initiative can be readily replicated throughout the state.

By virtue of applying for the Straight A Fund, all applicants agree to participate in the overall evaluation of the Straight A Fund for the duration of the evaluation time frame. The Governing Board of the Straight A Fund reserves the right to conduct an evaluation of the project and request additional information in the form of data, surveys, interviews, focus groups and other related data on behalf of the General Assembly, Governor and other interested parties for an overall evaluation of the Straight A Fund.

PROGRAM ASSURANCES: I agree, on behalf of this applicant, and any or all identified consortium members or partners, that all supporting documents contain information approved by a relevant executive board or its equivalent and to abide by all assurances outlined in the Straight A Assurances (available in the document library section of the CCIP).

Dr. Debra L. McCurdy President Rhodes State College
No consortium contacts added yet. Please add a new consortium contact using the form below.
Partnerships

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Telephone Number</th>
<th>Email Address</th>
<th>Organization Name</th>
<th>IRN</th>
<th>Address</th>
<th>Delete Contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dale</td>
<td>Lewellen</td>
<td>419-221-0807</td>
<td>lewellend@bathwildcats.org</td>
<td>Bath Local</td>
<td>045765</td>
<td>2650 Bible Rd, Lima, OH, 45801-2246</td>
<td></td>
</tr>
<tr>
<td>Mel</td>
<td>Rentschler</td>
<td>419-648-3333</td>
<td>rentschlerm@alleneastschool.org</td>
<td>Allen East Local</td>
<td>045757</td>
<td>9105 Harding Hwy, Harrod, OH, 45850-9485</td>
<td></td>
</tr>
<tr>
<td>First Name</td>
<td>Last Name</td>
<td>Title</td>
<td>Responsibilities</td>
<td>Qualifications</td>
<td>Prior Relevant Experience</td>
<td>Education</td>
<td>% FTE</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>---</td>
<td>---------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Will</td>
<td>Wells</td>
<td>Dean, Arts and Sciences Division</td>
<td>Planning, collaboration, implementation, staff supervision, oversight.</td>
<td>The Arts & Sciences Division currently provides and supports the majority of dual enrollment offerings provided by Rhodes State College, so between Wells and the discipline chairs, there is substantial expertise in successfully guiding and supporting dual enrollment initiatives.</td>
<td>Will Wells (Dean of Arts & Sciences) has served in this position for 22 years and as an educator at Rhodes State College for 33 years. Wells directs the academic division that will provide and oversee the proposed coursework for the I-STEM Academy.</td>
<td>M.A. Ohio University</td>
<td>2</td>
</tr>
<tr>
<td>John</td>
<td>Berry</td>
<td>Vice President for Student Affairs</td>
<td>Planning, collaboration, implementation, staff supervision, oversight.</td>
<td>In his current role at Rhodes State, Dr. Berry has administrative oversight for the functional areas of Admissions, Advising, Community Outreach, Financial Aid, Post-secondary/Dual Enrollment, Placement, Records and Registration; he provides leadership for the Student Code of Conduct and Student Behavioral Intervention Team.</td>
<td>Dr. Berry has over 25 years of experience in higher education serving in a myriad of roles and responsibilities. In his former positions at Central Ohio Technical College, Dr. Berry has served as Vice President for Enrollment Management and Dean of Students during which he managed the First-Year Experience Course. Positions held at other institutions include: Vice President for Student Services at Cape Fear Community College and faculty member at Ohio Dominican University.</td>
<td>PhD, Ohio State University</td>
<td>2</td>
</tr>
<tr>
<td>Ann</td>
<td>Selhorst</td>
<td>Restricted Fund Accountant</td>
<td>Budgeting, account administration, project accounting, oversight</td>
<td>Ann Selhorst has served at Rhodes State College for the past two years, monitoring federal and state grant accounting and compliance.</td>
<td>Ms. Selhorst has a BSBA in Accounting and an MBA in Finance and has worked in various accounting and finance positions for two large, publicly traded companies during her career. Ms. Selhorst maintains a practicing status as a CPA in the State of Ohio.</td>
<td>M.B.A. Case Western Reserve University</td>
<td>2</td>
</tr>
<tr>
<td>Becky</td>
<td>Burrell</td>
<td>Vice President for Institutional Effectiveness & Assistant to the President for Planning</td>
<td>Planning, collaboration, implementation, staff supervision, oversight.</td>
<td>Ms. Burrell oversees the institutional research, assessment, and grants areas. Ms. Burrell is responsible for leading campus development activities that support operational and strategic planning and the assessment of outcomes-based programming with special emphasis on ensuring the evaluation and application of Key Performance Indicators and Student Learning Outcomes across.</td>
<td>Prior to working at Rhodes State, Ms. Burrell managed planning and accreditation activities at Cincinnati State Technical & Community College and has 14 years of administrative and experiential education practice in science museums.</td>
<td>M.A. Antioch University</td>
<td>2</td>
</tr>
</tbody>
</table>
academic and non-academic units.