Budget

Gallia County Local (065680) - Gallia County - 2017 - Straight A Fund - Rev 0 - Straight A Fund - Application Number (17)

U.S.A.S. Fund #: 466

Plus/Minus Sheet (opens new window)

<table>
<thead>
<tr>
<th>Purpose Code</th>
<th>Object Code</th>
<th>Salaries 100</th>
<th>Retirement Fringe Benefits 200</th>
<th>Purchased Services 400</th>
<th>Supplies 500</th>
<th>Capital Outlay 600</th>
<th>Other 800</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>41,040.00</td>
<td>498,695.00</td>
<td>0.00</td>
<td>0.00</td>
<td>539,735.00</td>
</tr>
<tr>
<td>Support Services</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Governance/Admin</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Prof Development</td>
<td>40,000.00</td>
<td>7,200.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>47,200.00</td>
</tr>
<tr>
<td>Family/Community</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Safety</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Facilities</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Transportation</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Indirect Cost</td>
<td>40,000.00</td>
<td>7,200.00</td>
<td>0.00</td>
<td>41,040.00</td>
<td>498,695.00</td>
<td>0.00</td>
<td>0.00</td>
<td>586,935.00</td>
</tr>
<tr>
<td>Total</td>
<td>40,000.00</td>
<td>7,200.00</td>
<td>0.00</td>
<td>41,040.00</td>
<td>498,695.00</td>
<td>0.00</td>
<td>0.00</td>
<td>586,935.00</td>
</tr>
</tbody>
</table>

Adjusted Allocation | 0.00

Remaining | -586,935.00
Please respond to the prompts or questions in the areas listed below in a narrative form.

A) APPLICANT INFORMATION - General Information

1. Project Title: FUTURE: Funding Useful Technology for Underprivileged Rural E-Students

2. Project Tweet: Please limit your responses to 140 characters.
 FUTURE provides a technology path to support STEM, Differential Instruction and Blended Learning for 2017 project implementations in Gallia
 This is an ultra-concise introduction to the project.

3. Estimate of total students at each grade level to be directly impacted each year.
 This is the number of students that will receive services or other benefits as a direct result of implementing this project. This does not include students that may be impacted if the project is replicated or scaled up in the future. It excludes students who have merely a tangential or indirect benefit (such as students having use of improved facilities, equipment etc. for other uses than those intended as a part of the project). The Grant Year is the year in which funds are received from the Ohio Department of Education. Years 1 through 5 are the sustainability years during which the project must be fiscally and programmatically sustained.

<table>
<thead>
<tr>
<th>Grant Year</th>
<th>Pre-K Special Education</th>
<th>Pre-K Special Education</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150 K</td>
<td>150 K</td>
</tr>
<tr>
<td>Year 1</td>
<td>145 1</td>
<td>145 1</td>
</tr>
<tr>
<td></td>
<td>174 2</td>
<td>174 2</td>
</tr>
<tr>
<td></td>
<td>151 3</td>
<td>151 3</td>
</tr>
<tr>
<td></td>
<td>162 4</td>
<td>162 4</td>
</tr>
<tr>
<td></td>
<td>175 5</td>
<td>175 5</td>
</tr>
<tr>
<td></td>
<td>192 10</td>
<td>192 10</td>
</tr>
<tr>
<td>Year 2</td>
<td>150 1</td>
<td>150 1</td>
</tr>
<tr>
<td></td>
<td>145 2</td>
<td>145 2</td>
</tr>
<tr>
<td></td>
<td>174 3</td>
<td>174 3</td>
</tr>
<tr>
<td></td>
<td>151 4</td>
<td>151 4</td>
</tr>
<tr>
<td></td>
<td>162 5</td>
<td>162 5</td>
</tr>
<tr>
<td></td>
<td>175 6</td>
<td>175 6</td>
</tr>
<tr>
<td></td>
<td>192 11</td>
<td>192 11</td>
</tr>
<tr>
<td>Year 3</td>
<td>152 1</td>
<td>152 1</td>
</tr>
<tr>
<td></td>
<td>150 2</td>
<td>150 2</td>
</tr>
<tr>
<td></td>
<td>150 3</td>
<td>150 3</td>
</tr>
<tr>
<td></td>
<td>145 4</td>
<td>145 4</td>
</tr>
<tr>
<td></td>
<td>174 5</td>
<td>174 5</td>
</tr>
<tr>
<td></td>
<td>151 6</td>
<td>151 6</td>
</tr>
<tr>
<td></td>
<td>162 7</td>
<td>162 7</td>
</tr>
<tr>
<td></td>
<td>178 11</td>
<td>178 11</td>
</tr>
<tr>
<td>Year 4</td>
<td>152 1</td>
<td>152 1</td>
</tr>
<tr>
<td></td>
<td>150 2</td>
<td>150 2</td>
</tr>
<tr>
<td></td>
<td>150 3</td>
<td>150 3</td>
</tr>
<tr>
<td></td>
<td>150 4</td>
<td>150 4</td>
</tr>
<tr>
<td></td>
<td>145 5</td>
<td>145 5</td>
</tr>
<tr>
<td></td>
<td>174 6</td>
<td>174 6</td>
</tr>
<tr>
<td></td>
<td>151 7</td>
<td>151 7</td>
</tr>
<tr>
<td></td>
<td>164 11</td>
<td>164 11</td>
</tr>
<tr>
<td>Year 5</td>
<td>154 1</td>
<td>154 1</td>
</tr>
<tr>
<td></td>
<td>152 2</td>
<td>152 2</td>
</tr>
<tr>
<td></td>
<td>152 3</td>
<td>152 3</td>
</tr>
<tr>
<td></td>
<td>150 4</td>
<td>150 4</td>
</tr>
<tr>
<td></td>
<td>150 5</td>
<td>150 5</td>
</tr>
<tr>
<td></td>
<td>145 6</td>
<td>145 6</td>
</tr>
<tr>
<td></td>
<td>174 7</td>
<td>174 7</td>
</tr>
<tr>
<td></td>
<td>151 8</td>
<td>151 8</td>
</tr>
</tbody>
</table>
4. Explanation of any additional students to be impacted throughout the life of the project. This includes any students impacted indirectly and estimates of students who might be impacted through replication or an increase in the scope of the original project.

Preschool students are exposed to tablet devices in today's environment, but not consistently thereafter. A gap exists as they proceed through grade levels. Devices are instrumental for learning and economic circumstances often hinder students' ability to access technology. Because Gallia County Local Schools (GCLS) serves, on average, 160 preschool students per year an aggregate impact over five years is 800 students. Further, this project has the potential to impact additional K-12 students who attend classes in our non-traditional settings (i.e., digital academy, blended options, College-Credit Plus, and Career Tech).

5. Lead applicant primary contact: - Provide the following information:

First and last name of contact for lead applicant
Todd Boothe

Organizational name of lead applicant
Gallia County Local Schools

Address of lead applicant
4836 State Route 325, Patriot, Ohio 45658

Phone Number of lead applicant
(740) 379-9085

Email Address of lead applicant
gl_tboothe@seovec.org

Community School Applicants: After your application has been submitted and is in Authorized Representative Approved status an email will be sent to your sponsoring entity automatically informing the sponsor of your application.

6. Are you submitting your application as a consortium? - Select one checkbox below

- Yes
- No

If you are applying as consortium, please list all consortium members by name on the "Consortium Member" page by clicking on the link below. If an educational service center is applying as the lead applicant for a consortium, the first consortium member entered must be a client district of the educational service center.

Add Consortium Members

7. Are you partnering with anyone to plan, implement, or evaluate your project? - Select one checkbox below

- Yes
- No

If you are partnering with anyone, please list all partners (vendors, service providers, sponsors, management companies, schools, districts, ESCs, IHEs) by name on the "Partnering Member" page by clicking on the link below.

Add Partnering Members

B) PROJECT DESCRIPTION - Overall description of project and alignment with goals

8. Describe the innovative project: - Provide the following information

The response should provide a clear and concise description of the project and its major components. The following questions will address specific outcomes and measures of success.

a. The current state or problem to be solved; and

Education, once an equalizer, now faces the digital divide. Gallia County Local Schools (GCLS), a rural, high poverty, district in Southeastern Ohio, must bridge the gap by providing a technology rich environment. Transforming classrooms to support 21st Century expectations requires digital tools. Students must be college and career ready. Providing adequate hardware resources, to support gap closing and increase student achievement is a challenge. Fullan indicates that to transform instruction, a shift in pedagogical, technological, and change knowledge is necessary. Teacher survey data shows a readiness for a technology-rich environment and the district has identified the need for a higher level of differentiated instruction. This grant will allow GCLS to continue its commitment to implementing STEM initiatives, blended learning opportunities, and increased digital instruction with 1:1 device deployment, as it relates to meeting individual needs and educational opportunities.

b. The proposed innovation and how it relates to solving the problem or improving on the current state.

Funding Useful Technology for Underprivileged Rural E-students (FUTURE) becomes the hub in which all current, proposed, and future
digital opportunities connect to foster college and career readiness. The hub consists of a 1:1 environment for all students in grades K-12, the integration of a digital communication platform for collaboration and productivity, a means for adequately implementing differentiated instruction, and the associated professional development to support the process. A 2014 survey indicated that 73% of GCLS staff believe that a 1:1 environment is optimal for the integration of technology into instruction. GCLS is committed to supporting implementation of STEM initiatives through software obtained as the by-product of an energy savings initiative. In collaboration with the National Education Foundation, the STEM component consists of Pearson SuccessMaker Reading and Math software. The second component is the implementation of Pearson Gradpoint, the foundational tool set for grades 6-12 digital academy, as well as a blended learning format. The district’s current financial commitment demonstrates acknowledgment of the desire to improve student readiness as students enter the next phase of their lives. In order to adequately utilize the available tools additional funding is needed to build the foundation to embed an expectation for differentiated classrooms and providing opportunities for students. Much of this can be accomplished digitally. FUTURE will build upon a pilot project, which involved approximately 168 students and 12 teachers in the GCLS. The pilot project developed technology-rich environments for two subgroups of students in the district; a 1:1 environment for all senior students and a classroom set of carts for two grade levels in an elementary building. This was possible due to an investment in wireless infrastructure throughout the district. Based upon both qualitative and quantitative data collected in the pilot sites, and associated professional development feedback, the district realized a shift in thinking and innovative use of technology as an integral part of daily instruction for the subgroup of teachers and students. Teachers also incorporated higher levels of differentiated instruction and students demonstrated increased student engagement, as well as increased academic success. By expanding access, students will benefit from this advanced learning model. FUTURE will replicate a digital environment for all.

This initiative will be used to promote skills identified as necessary for students to become college and career ready, attain real-life experience with technology so they are ready for future endeavors, as well as a tool for meeting individual needs and providing students with educational choices. According to the American Management Association and Partnership for 21st Century Skills, “Executives say they [employers] need a workforce fully equipped with skills beyond the basics of reading, writing and arithmetic to grow their businesses.” Skills such as critical thinking, communication, collaboration, and creativity will become even more important to organizations in the future. The proposed digital initiative will contribute to this effort. The proposed implementation will provide students in grades 6-12 with a Chromebook for 24 hour access at both school and home. Teachers in grades 2-5 will be issued a cart of Chromebooks. Kindergarten and grade 1 classrooms will be issued a cart of iPads, as the touch screen technology, seems more appropriate for students in this age group. If secured, this funding will help bridge the technology divide and provide GCLS teachers and students with a sustainable foundation to support "out-of-the-box instruction" and "student owned learning." The implementation of 1:1 devices is the missing puzzle piece. This initiative will maximize opportunities for collaboration, differentiated learning, and student educational choice.

9. Select which (up to four) of the goals your project will address. For each of the selected goals please provide the requested information to demonstrate your innovative process. - (Check all that apply)

- a. Student achievement
 - i. List the desired outcomes.
 Examples: fewer students retained at 3rd grade, increase in graduation rate, increased proficiency rate in a content area, etc.
 Through this project, student achievement will increase. The 21st century skills of communication, collaboration, creativity, critical thinking, information/technology literacy, and technology competence/responsibility will improve due to increased opportunities to practice these skills. Through the use of GAFE (Google docs, sheets, forms, classroom, etc.), student engagement will improve. This should lead to increased student achievement in all subjects. Simply putting laptops in the hands of students is not a guarantee that any significant difference in teaching or learning will take place, especially in economically disadvantaged schools (Kemker et al., 2007). Software that fosters authentic activities includes word processors, spreadsheets, and publishing tools, which allow students to collaborate, think, and create (Kemker et al.).

 - ii. What assumptions must be true for this outcome to be realized?
 Examples: early diagnosis and intervention are needed to support all children learning to read on grade level; project-based learning results in higher levels of student engagement and learning, etc.
 According to Jensen (2013), "using technology in the classroom also helps level the playing field for low-SES students, who are less likely than their higher-SES peers to have their own computers or Internet access at home" (p. 149). To meet the demands of an ever changing educational system, one must investigate and explore potential solutions for eliminating the digital divide that our low income students currently experience. Providing a technology-rich environment will lead to the increased use of purchased software as well as an increase in digital tools to foster 21st century skills. Teachers will be trained with appropriate professional development to use Google Classroom to successfully implement differentiated instruction. Baseline data will be available and documented for comparative analysis after implementation. The district will assume that with conditions similar to those in the pilot, a similar result will be realized.

 - iii. Describe any early efforts you have made to test these assumptions (pilot implementation, etc), or how these are well-supported by the literature.

Whidden (2008) states that normally the academic community advocates for 1:1 initiatives to propel instruction toward meeting academic goals (2008). These projects are not technology driven initiatives, but rather initiatives driven by educators (Thomas, 2013). While Derringer (2010) recognizes that 1:1 initiatives can be taxing from an IT perspective, most districts report that the benefits, which include more relevant and student driven learning, are worth the effort. Specifically in rural areas, Gordon (2011) cites the “lack of infrastructure and funding” (p. 20) and a “shortage of tech-savvy teachers, staff, and potential community partners” (p. 20) as barriers to integrating technology into classrooms. Often rural students and teachers grasp the power of incorporating technology into learning, but the difficult task of convincing members of the community to invest in technology initiatives hinder access to needed tools (Gordon). In a 2014 technology survey, the GCLS staff expressed a need for increased accessibility to internet devices and professional development surrounding technology to meet the needs of students. Along with infrastructure and the staff's interest in the integration of technology in learning, key components led to increases in use of technology, specifically in GAFE applications in the pilot including; 1) gathering data from the staff and designing the project to meet the needs of teachers and students; 2) selecting Chromebooks which were affordable, durable, and reliable; 3) ensuring the availability of technology to each student and teacher in the pilot; 4) identifying a subset of teachers to serve as champions for technology-rich classrooms; and 5) providing professional development to the targeted groups. In the pilot, increased usage of purchased software was reported. The purchased software integration for Study Island, an online test preparation software for students, increased at grades four and five as reported by teachers in the pilot. The software integration level for the math program ALEKS,
Assessment and Learning in Knowledge Spaces, was also reported to have increased at grades four, five, and 12. In the elementary pilot, fourth and fifth grade students recorded a growth in math skills of four to six times greater with Chromebooks than they recorded the year before without Chromebooks. The delivery of the professional development was a key component in the increase in GAFE use and the successful integration of technology into student learning. The key elements of the professional development included: 1) allowing participants in the pilot to explore and become proficient users of the Chromebook before they were expected to use it with students; 2) establishing the need to develop a technology-rich environment by exposing them to ideas generated by educational innovators such as Michael Fullan, Rita Pierson, Sir Ken Robinson, Grant Lichtman, and Heidi Hayes-Jacobs; 3) shifting mindsets by giving participants the opportunity to challenge their current practice and comparing current practice to the innovative ideas shared by innovators; 3) creating the professional development so that participants experienced the ease of using GAFE through planned activities; 4) modeling activities that could be easily adapted to activities at any level; and 5) encouraging risk-taking using the technology while providing a collaborative environment. In the survey used in the pilot project, the elementary and secondary results indicated an increase in GAFE use by teachers for all applications with the greatest increase in the use of Google Docs and Classroom. Before the professional development, elementary and secondary teachers rated Google Classroom as an application that they did not want to use or needed additional help in using. After the implementation of the pilot project, both sets of teachers reported that they felt comfortable or wanted new ideas in using Google Classroom.

iv. List the specific indicators that you will use to measure progress toward your desired outcome. These should be measurable changes, not merely the accomplishment of tasks. Example: Teachers will each implement one new project using new collaborative instructional skills, (indicates a change in the classroom) NOT; teachers will be trained in collaborative instruction (which may or may not result in change).

A technology task force, composed of members of the District Leadership Team (DLT) and other stakeholders, working collaboratively with others identified through the current infrastructure as part of the Ohio Improvement Process (OIP), will evaluate levels of implementation and areas of need using a district-developed implementation rubric. The rubric will include measured benchmarks in relation to teacher use of technology as an integral part of instruction, self-reported by teachers through the survey and shared within TBT meetings. Additionally, both students and staff will fill out the surveys used to measure engagement and project implementation. The results of the surveys and rubrics will be reported to the building and district leadership teams after the pre and post surveys each year.

v. List and describe pertinent data points that you will use to measure student achievement, providing baseline data to be used for future comparison.

Student performance will be measured using multiple toolsets, with a determination of student achievement ultimately being reflected on ODE's district report card. Current district baseline data: GCLS performance index-D,68.7%; GCLS indicators met-F, 47.1%; GCLS gap closing-D, 66.7%; GCLS K-3 Literacy-C, 47.3%; GCLS overall value added-F; and GCLS 5 year graduation rate-B. Student Growth Measures, independent student reading assessments, SuccessMaker, and ACT scores will be used to track progress and measure student achievement throughout the year. In addition, teacher and student perception of project implementation will be measured using the pre and post survey. Adult implementation indicators will be measured through the DLT, BLT, and TBT by self-reporting on an implementation survey two times per year. Digital Academy student achievement will be monitored closely through assessment built into the program throughout the year.

vi. How are you prepared to alter the course of your project if assumptions prove false or outcomes are not realized?

Based upon the implementation of the pilot project in 2015-2016, and the associated survey results of teachers and students, district-wide implementation should show similar results. Due to the emphasis on implementation procedures and job-embedded professional development, reflection and correction will continue throughout the project. The alignment of the project to the Ohio Teacher Evaluation System creates greater opportunities for teachers to demonstrate evidence at the skilled and accomplished levels, which can be used to provide feedback to teachers throughout the project. Teachers struggling with creating a technology rich environment or implementing district purchased software with fidelity will receive extra support through teacher teams. Student achievement will be monitored throughout the year, and will be measured using Ohio's district report card. District purchased software, which should be implemented with fidelity with the additional accessibility to Chromebooks, will be vetted and software which does not produce desired student achievement results will be replaced. With a systemic procedure in place for student device rotation, the project will allow for the district to change with the most recent developments in technology to influence future device selection.

b. Spending reductions in the 5 year forecast

i. List the desired outcomes.

Examples: lowered facility cost as a result of transition to more efficient systems of heating and lighting, etc.; or cost savings due to transition from textbook to digital resources for teaching.

The influx of new equipment, and reallocation of existing equipment, will allow the district to freeze computing replacements for one year after implementation, then begin a 20% device replacement with expenses of $148,987 every year, following a five year lifecycle policy for chromebooks and Ipads and a seven year refresh policy for laptops. GCLS will realize aggregate capital outlay savings of $165,865 for FY18 and $16,878 every year after for the life of the grant. Based on pilot information, toner and paper savings are projected to be $72,240 annually. Textbook cost savings will initially be minimal, but potential savings could be significant as book companies transition from paper/digital packages to digital only. Energy savings should be immediate, as the district has verified that energy costs will be less than that of desktop units.

ii. What assumptions must be true for this outcome to be realized?

Example: transition to "green energy" solutions produce financial efficiencies, etc.; or available digital resources are equivalent to or better than previously purchased textbooks.

Implementation will start in the 2016-2017 school year with vendor pricing quotes for devices and carts remaining valid. Imperative to the process, is the implementation of professional development for all teaching staff in July 2016 with follow up professional development prior to the start of school. This will help ensure teacher buy-in is in place prior to the start of school. Students will complete a digital citizenship training prior to receiving a device. All 1:1 devices in grades 6-12 as well as K-5 carts will be deployed within the first week of school. Technology staff will be available to configure and deploy devices to teachers and students. As opportunities present themselves, digital resources will be used as the standard. The selection of a specific device, sufficient for all district-wide initiatives, will result in a reduction
iii. Describe any early efforts you have made to test these assumptions (pilot implementation, etc.), or how these are well-supported by the literature.

Fullan (2013) describes well-designed, educational technology products as having a “sophisticated design combined with irresistible, engrossing ease of use as you acquire deep learning competencies at an affordable cost” (p. 55). When implementing new technology into instruction, the ease of use for teachers and students must be considered. A device that is simple to use reduces the amount of distraction the device itself puts on the implementation; therefore, concentration can be placed on the implementation itself. Another component that had to be considered was the demands on the GCLS IT department. With only two technicians in the district, the workload created by a 1:1 environment had to be considered. “The simplified architecture means that Chromebooks are significantly easier to manage than traditional PCs” (O’Donnell & Perry, 2013). The simplistic design of the Chromebook and Chrome applications use internet connectivity and cloud storage to allow for the creation, storage, and collaboration of files and applications by the user. Technology staff have been trained on device management and configuration which eases the deployment of a reliable 1:1 environment. Configuration of Google Console in conjunction with Microsoft active directory have been determined, tested and verified as part of the Senior and Elementary 1:1 Pilot. Cisco Meraki WAN infrastructure was designed and installed in all GCLS buildings in 2015 to support state testing on digital platforms as well as robust enough to accommodate 1:1 device needs. Scalability is available to support additional devices within current environment. The architecture of both the WAN and Active directory is Scalable to support the increased devices. Based upon pre and post survey results of teachers participating in the pilot, an increase in device and application usage was seen at both the elementary and secondary level. Specifically, teacher usage of nearly all district purchase instructional software increased based upon pre and post survey data. Google Apps for Education, software with minimal domain cost to the district increased from minimal use to weekly to daily use by teachers participating in the pilot as reported in pre and post survey results. Assumptions can be made that the impact of professional development prior to implementation, system of supports built for teachers, as well as the ease of use of the tools and device provided for more frequent use of district software and tools.

589577

iv. Please enter the Net Cost Savings from your FIT.

A reduction in capital outlay expenses will be realized. By moving to a more cost effective computing device, and reallocating current testing laptops, mitigating future expenditures, and having an overall newer fleet of units, there will be spending reductions. The district will not spend any capital outlay funds on computing devices FY18, which will result in the largest savings of $165,865 over the life of the grant. The yearly savings from what the district currently spends on computing devices and what will be required after FY18 will result in a savings of $16,878 annually. The district budget will also be impacted positively by a decrease in materials and supplies. Pilot findings indicated that classrooms will save a box of paper per year by increasing digital instruction and assessments. Based upon the number of classrooms in the district, and paper costing approximately $0.08 per sheet for black and white printing, the district will realize a yearly savings of $72,240.

vi. How are you prepared to alter the course of your project if assumptions prove false or outcomes are not realized?

The premise of program success depends on the buy-in of students, staff and other stakeholders. Due to pilot opportunities within the district and data based upon current district students and staff, assumptions have little likelihood of becoming false. Opportunities to alter the course include a greater emphasis to secure buy in at various grade levels within buildings or a systemic shift in technology device per the district replacement policy to meet learner needs. Due to wireless infrastructure in place and the simplicity of the device, any shift in course would be a refinement of the implementation procedure and support.

589577

List and describe the budget line items where spending reductions will occur.

The district will not spend any capital outlay funds on computing devices FY18, which will result in the largest savings of $165,865 over the life of the grant. The yearly savings from what the district currently spends on computing devices and what will be required after FY18 will result in a savings of $16,878 annually. The district budget will also be impacted positively by a decrease in materials and supplies. Pilot findings indicated that classrooms will save a box of paper per year by increasing digital instruction and assessments. Based upon the number of classrooms in the district, and paper costing approximately $0.08 per sheet for black and white printing, the district will realize a yearly savings of $72,240.

List the desired outcomes.

Example: improve the ratio of leadership time spent in response to discipline issues to the time available for curricular leadership.

Currently, many of the curriculum resources adopted by GCLS have paper and digital components. Often, students and teachers don’t have the opportunity to take advantage of digital components of the adopted curriculum due to the lack of reliable devices. With a Chromebook for each student, access to digital components of the curriculum will be increased. In addition, teachers and students are not able to take full advantage of GAFE applications when there are only four or five computers in the back of a classroom. Teachers will take advantage of elements of Google Classroom (GAFE) applications when all students have access to a Chromebook leading to more student led learning opportunities. Students taking advantage of blended learning opportunities offered by our digital academy and offerings by universities will have a reliable device to complete assignments. Without this component, some economically disadvantaged students may not be able to experience these learning opportunities.

What assumptions must be true for this outcome to be realized?

Examples: improvements to school and classroom climate will result in fewer disciplinary instances allowing leadership to devote more time to curricular oversight.

With professional development that accentuates the ease of Chromebooks and GAFE, teachers will be able to easily utilize many student friendly applications that they currently do not access. Students who have no internet accessibility at home or a device to do work at home will have a more even playing field with students that have the advantage of dependable internet and current hardware and software. The exchange of Chromebooks for PC’s offers students and teachers more accessibility at home and in the classroom. With an InfOhio coach in the district, GCLS teachers and students will be able to take advantage of the free resources offered by InfOhio which links directly to Google Classroom. GCLS will be able to add dual enrollment classes for students to earn multiple college credits to advance achievement. Online courses will allow schools to differentiate for struggling students. Students will be able to take classes that match their instructional needs while also meeting standards.

Describe any early efforts you have made to test these assumptions (pilot implementation, etc.), or how these are well-supported by the literature.

One of the features considered when selecting the Chromebook and GAFE was ease of use, especially in regards to the incorporation of cloud computing. Cloud computing is simplistically defined as "files that are saved through websites, rather than being stored on a local computer's hard drive" (Covill, 2012, p. 9). Cloud computing creates opportunities for teachers to collaborate with students and for students to collaborate with other students. Cloud computing offers students an easy way to access their work at any location. Due to the rural
context, offline mode available on Chromebooks allows students to continue work even if connectivity is not available. Any changes made in offline mode will sync with cloud storage the next time internet is accessible. A GCLS survey conducted in 2014 indicated that 63.4% of GCLS students either do not have internet connectivity at home or only that of a cell phone. Of those reporting with internet access, 49.0% reported that their Internet was through their cellphone carrier only; therefore, a device that supported offline applications was crucial to meet the needs of all students. Features such as automatic save of changes while using Google applications were also beneficial for students since they often forget to save and the probability of losing an external storage drive. Students in the pilot were able to access a multitude of resources as well as to work collaboratively with one another. Between teachers and students, the implementation of GAFE and the 1:1 initiative supported maximization of technology use in the classroom to promote student learning by making it a component of instruction and not in addition to the classroom instruction. Data regarding implementation of the Google tools and Chromebooks were collected using a survey given to students and a survey given to teachers, as well as the collection of qualitative data by way of informal conversations and reflections by students, teachers, and administrators. At the beginning of the project, teachers reported Chromebook use as 'not used at all'. By the end of the project, Chromebook use was reported by teachers as 'daily'. Likewise, 96.4% of elementary students reported Chromebook use as daily, and 70.3% of Seniors reported daily Chromebook use. Use of district purchased software increased from 'monthly' to 'weekly' for some software. Level of Use of GAFE applications moved from 'I don't know what this is/Want to use, need additional help' to Used, but need new ideas/Comfortable with use'. When asked if the addition of Chromebooks enhanced their learning. 97.4% of grade 12 students and 91.1% of ? students reported 'yes'. One senior student stated that to him "this has made all the difference" for his senior year. He went on to describe the computer he would access at home was out of date and unreliable. The access to "his" chromebook allowed for an equal playing field through the year. Students also described the 1:1 project as making their learning more efficient, organized, improved time management and organization as well as added to collaboration and connection to one another. Senior students were observed completing transitional items, such as college applications, essays, and blended opportunities beyond the school day. Students have been observed taking advantage of differentiated instruction in multiple ways. 5th grade social studies students were observed collaboratively using Google slides to develop presentations to prove their theory on the demise of the Mayan empire; 4th grade LA students were observed using Google docs to create examples of different parts of speech; 4th grade math students received differentiated instruction on multiplying fractions after the teacher was able to discern their level through a district purchased software. These opportunities for differentiation were not available to our students before the Chromebooks and GAFE applications were introduced in the pilot program.

iv. Please provide the most recent instructional spending percentage (from the annual Ohio School Report Card) and discuss any impact you anticipate as a result of this project.

Note: this is the preferred indicator for this goal.

Per the 2014-2015 Report Card for Gallia County Local School District, the percentage of funds spent on classroom instruction is 57.2%, in comparison to other districts of similar size it ranks 270 out of 276. Through the savings realized through this program we will be able to allocate money toward additional instructional programs and professional development needed to improve student achievement.

v. List any additional indicators that you will use to monitor progress toward your desired outcome. Provide baseline data if available.

These should be specific outcomes, not just the accomplishment of tasks. Example: fewer instances of playground fighting.

Baseline data can be provided with current students participating in blended and online opportunities for the 15-16 school year. To monitor the progress toward increased usage of district purchased software and GAFE applications we will take a baseline picture at the end of the 15 - 16 school year. We will monitor usage throughout the year using a beginning, midyear, and end of year check.

vi. How are you prepared to alter the course of your project if assumptions prove false or outcomes are not realized?

Many of the assumptions are anticipated to prove true, due to the pilot opportunity presented to a subgroup of teachers and students during the 2015-2016 academic year. One of the assets of the pilot was the ability to build champions for technology integration into each of the two schools. Due to the scale of a whole-district roll out, there may be a need for focus groups within buildings, particularly those who did not participate in the pilot. In addition, the district must work to secure administrator and teacher buy-in prior to the deployment to students through a series of professional development opportunities. We will monitor the project over the course of the implementation year, as well as subsequent sustainability years. Therefore, adjustments can be made based upon formative data. Additionally, because a formal summative evaluation is planned, annually, changing needs will drive the path of the project.

d. Implementing a shared services delivery model

i. List the desired outcomes.

Examples: increase in quality and quantity of employment applications to districts; greater efficiency in delivery of transportation services, etc.

ii. What assumptions must be true for this outcome to be realized?

Example: neighboring districts have overlapping needs in administrative areas that can be combined to create efficiencies.

iii. Describe any early efforts you have made to test these assumptions (pilot implementation, data analysis etc), or how these are well-supported by the literature.

iv. List the specific indicators that you will use to monitor progress toward your desired outcomes.

These should be measurable changes, not the accomplishment of tasks.

Example: consolidation of transportation services between two districts.

v. List and describe pertinent data points that you will use to evaluate the success of your efforts, providing baseline data to be used for future comparison.

Example: change in the number of school buses or miles travelled.
C) BUDGET AND SUSTAINABILITY

11. Financial Information: - All applicants must enter or upload the following supporting information. The information in these documents must correspond to your responses in questions 12-19.

a. Enter a project budget in CCIP (by clicking the link below)

b. If applicable, upload the Consortium Budget Worksheet (by clicking the Upload Documents link below)

c. Upload the Financial Impact Table (by clicking the Upload Documents link below)

Upload Documents

The project budget is entered directly in CCIP. For consortia, this project budget must reflect the information provided by the applicant in the Consortium Budget Worksheet. Directions for the Financial Impact Table are located on the first tab of the workbook. Applicants must submit one Financial Impact Table with each application. For consortium applications, please add additional sheets instead of submitting separate Financial Impact Tables.

586,935.00 12. What is the amount of this grant request?

13. Provide a brief narrative explanation of the overall budget.

Responses should provide a rationale and evidence for each of the budget items and associated costs outlined in the project budget. In no case should the total projected expenses in the budget narrative exceed the total project costs in the budget grid.

The amount requested to fund FUTURE is $586,935. The rationale for each of these purchases is the overarching need to ensure that each student has access to a device so that individual needs can be met at a higher level and that students will have more educational choices at their disposal. This rationale should facilitate improved academic achievement across the board. The grant will cover expenses that include purchasing devices, carts, protective cases, and professional development. $309,350 will be spent on purchasing 1,345 Chromebooks at $230 per unit. Chromebook unit costs also include Google licensing. The district will combine and utilize 168 Chromebook pilot devices purchased in FY16, as well as 275 units that were purchased exclusively to support digital testing in FY15 with the new 1,345 units to be deployed for 1:1 for grades 6-12 and a 20 unit cart per room for grades 2-5. Two thousand and two hundred Chromebook cases will be purchased at $30 each, with an aggregate cost of $63,000 for the deployed units. Nine Chromebook carts will be purchased for grades 2-5, at $1,185 each (totaling $10,665). The district will repurpose 24 existing mobile device carts and redeploy with Chromebooks for grades 2-5 to ensure that all classrooms have a cart of systems. Four-hundred and twenty-Ipads, at $374 each, will be purchased for grades K-1. Each Ipad will be fitted with a protective case at a cost of $12 each. The total cost for Ipad units and protective cases is $157,080 and $5,040, respectively. Eighteen carts will be purchased, one for each classroom, with an aggregate cost of $21,600. All 160 GCLS teachers will be given a two-day training to understand how to implement and use the technology in their classrooms. The cost is $125 a day per teacher plus benefits with a total cost of $47,200.

14. Please provide an estimate of the total costs associated with maintaining this program through each of the five years following the initial grant implementation year (sustainability costs). This is the sum of expenditures from Section A of the Financial Impact Table.

<table>
<thead>
<tr>
<th>Sustainability Year</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>150,237.00</td>
</tr>
<tr>
<td>3</td>
<td>150,237.00</td>
</tr>
<tr>
<td>4</td>
<td>150,237.00</td>
</tr>
<tr>
<td>5</td>
<td>150,237.00</td>
</tr>
</tbody>
</table>

15. Please provide a narrative explanation of sustainability costs.

Sustainability costs include any ongoing spending related to the grant project after June 30, 2017. Examples of sustainability costs include annual professional development, staffing costs, equipment maintenance, and software license agreements. To every extent possible, rationale for the specific amounts given should be outlined. The costs outlined in this narrative section should be consistent and verified by the financial documentation.
The district will be able to both sustain this project and realize a net cost savings of $589,577 from FY18-FY22. Due to several factors, the district will experience a significant savings in FY18. Even though the implementation is to support individualized instruction and educational choices (STEM, Blended Learning, etc.), an important byproduct is the shift in device infrastructure. The current environment consists of desktops and laptops which have a higher cost per unit than chromebooks and ipads. By changing device type, capital outlay needs will decrease in regard to supporting, refreshing, and addressing break/fix policies. Secondly, since most systems will be new or reallocated systems that are <2 years old, the district will not need to implement the refresh cycle until FY19. No sustainability costs will be incurred for FY18. FY19-FY22 the district will spend $1,250 on professional development for new teachers and $149,987 for device replacement. Ips and Chromebooks will be replaced on a five year life cycle and laptops on a seven year refresh. The district currently spends $165,865 per year on computing device replacement. These funds will be used to maintain the new computing devices, therefore, the district will mitigate $16,878 in costs. GCLS will also benefit from cost savings in both the need for paper and printer toner. The pilot demonstrated that each classroom which used chromebooks saved, conservatively, a box of paper. Printing black and white pages costs about $.08 per page, depending upon print type (laser, inkjet). The cost savings generated by changing how we interact with student learning is calculated at $72,240.

100.00 16. What percentage of these costs will be met through cost savings achieved through implementation of the program?

Total cost savings from section B of the Financial Impact Table divided by total sustainability cost from section A of the Financial Impact Table. If the calculated amount is greater than 100, enter 100 here.

17. Please explain how these cost savings will be derived from the program.

Applicants who selected spending reductions in the five-year forecast as a goal must identify those expected savings in questions 16 and 17. All spending reductions must be verifiable, permanent, and credible. Explanation of savings must be specific as to staff counts; salary/benefits; equipment costs, etc.

Supporting the goals and objectives of differentiated learning and providing opportunities for students through blended learning, STEM initiatives, etc., the district researched hardware platforms that would be both effective for instruction and cost conscious. Chromebooks are about 40% of the cost of traditional desktops or laptops, while Ipads are about 60%. By leveraging industry trends and efficiencies the district will realize a significant cost savings of approximately $589,587 for FY18-FY22 beyond sustaining this grant. The platform shift is a necessity to support our goals of 1:1, where a reliable low-cost unit can deployed and supported. Cost mitigation, after FY18, will be $16,878 for capital outlay and material and supply costs will be cut annually by approximately $72,240 due to taking advantage of the digital collaboration tools, the assessment software package, and academic applications. The district will see a cost savings of $1,190,525 from FY18 - FY22. Sustainability costs are determined to be $600,948. The model GCLS has developed will implement infrastructure cost savings to support major shifts in learning will be a sustainable model that other economically disadvantaged districts could follow as they tackle the digital divide. This grant will allow the district to quickly engage all students, replicating pilot successes, and not be forced to implement over time, which would have been somewhat counter-productive.

0 18. What percentage of sustainability costs will be met through reallocation of savings from elsewhere in the general budget?

Total reallocation from section C of the Financial Impact Table divided by total sustainability cost from section A of the Financial Impact Table

Note: the responses to questions 16 and 18 must total 100%

19. Please explain the source of these reallocated funds.

Reallocation of funds implies that a reduction has been made elsewhere in the budget. Straight A encourages projects to determine up front what can be replaced in order to ensure the life of the innovative project.

GCLS will realize financial savings through the entire grant sustainability timeframe and beyond. Funds will not need to be reallocated.

D) IMPLEMENTATION

20. Please provide a brief description of the team or individuals responsible for the implementation of this project, including other consortium members or partners.

This response should include a list of qualifications for the applicant and others associated with the grant. Please list key personnel only. If the application is for a consortium or a partnership, the lead should provide information on its ability to manage the grant in an effective and efficient manner. Include the partner/consortium members’ qualifications, skills and experience with innovative project implementation and projects of similar scope.

Enter Implementation Team Key Personnel information by clicking the link below:

Add Implementation Team

For Questions 21-23 please describe each phase of your project including its timeline, and scope of work.

A complete response to these questions will demonstrate awareness of the context in which the project will be implemented and the time it will take to implement the project with fidelity. A strong plan for implementing, communicating and coordinating the project should be apparent, including coordination and communication in and amongst members of the consortium or partnership (if applicable). Not every specific action step need be included, but the outline of the major steps should demonstrate a thoughtful plan for achieving the goals of the project. The timeline should reflect significant and important milestones in an appropriate time frame.

21. Planning

a. Date RangeJuly 2014 - June 2016

b. Scope of activities - include all specific completion benchmarks.

In July 2014, infrastructure in all district buildings were upgraded with Cisco Meraki access points to support new state online assessment...
requirements as well as the increased need for devices used for instruction. At this time, an increased number of laptops and desktops were purchased to increase student access to technology due to demands of online testing. In August 2014, the district partnered with a university to begin offering college courses to students in the building using district technology. In Fall 2014, district administrators began reviewing technology implementation research and developing a pilot implementation plan as well as teacher professional development. Technology staff received training on the Google Admin Console in May 2015 and linked GAFE accounts to the active directory in each building. In July 2015 two schools started pilot projects with a 1:1 (grade 12) and Chromebook carts (grades 4-5) to collect data regarding student and teacher implementation data and the use of technology and implementation of current district educational programs. As part of this, in July and August 2015, a subgroup of teachers in two schools were provided professional development on Chromebooks, Google Apps for Education including classroom as well as the pedagogical shift to implement technology into their instruction. In January 2016 the district began a partnership with the National Education Foundation through a QZAB project to provide greater resources and educational options for the students of Gallia County Local. Also in January 2016, the district began offering digital options for students.

22. Implementation(grant funded start-up activities)

<table>
<thead>
<tr>
<th>a. Date Range</th>
<th>July 2016 - June 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Scope of activities - include all specific completion benchmarks</td>
<td></td>
</tr>
<tr>
<td>July 2016: Teachers will receive a Chromebook and 1 day of PD devoted to technology mindset. Baseline data will be collected at this inservice through initial survey and implementation rubric. Orders for Chromebooks will be processed. August 2016: Chromebooks will be received, configured, and added to the Google Mgt Console by IT department. Teachers will receive 2nd day of professional development focusing on development of classroom materials using GAFE. Beginning of Chromebook deployment to students, including parent meetings for 6 - 12 students to fully explain responsibilities of Chromebook care to parents, describe functionality of GAFE application and allow for parental opt out and sign parent agreement. Elementary classrooms will ensure that Chromebook carts are organized and acceptable use forms will be collected before student use. September 2016: Chromebooks and GAFE should be operational in all classrooms. Teachers should be employing Google Classroom and GAFE applications, as well as district purchased software to deliver instruction. Teachers will receive continued support for the implementation of these tools by the Technology Task Force. November 2016: Technology Task Force will conduct walkthroughs in each building based upon the implementation rubric. Feedback from the walkthroughs will be shared from the Task Force to the District and Building Leadership Teams. March 2017: Technology Task Force will conduct walkthroughs in each building based upon the implementation rubric. Feedback from the walkthroughs will be shared from the Task Force to the District and Building Leadership Teams. May 2017: Survey teachers and students in first year of implementation using survey and implementation rubric. June 2017: The Technology Task Force will identify gaps and future professional development needs and make adjustments for the upcoming year. Preparation will be made for professional development for new employees to begin in July 2017.</td>
<td></td>
</tr>
</tbody>
</table>

23. Programmatic Sustainability (years following implementation, including institutionalization of program, evaluation and communication of program outcomes)

<table>
<thead>
<tr>
<th>a. Date Range</th>
<th>FY18 - FY22</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Scope of activities - include all specific completion benchmarks</td>
<td></td>
</tr>
<tr>
<td>The cycle described will be used each year from July 2017 to June 2022. July: Professional Development for new staff members and staff members needing additional professional development will be implemented. August: Parent meetings for 6th grade students to fully explain responsibilities of Chromebook care to parents, describe functionality of GAFE application and allow for parental opt out and sign parent agreement. All other students in grades 6 - 12 will be given their Chromebooks after their Acceptable Use Agreement has been turned in. September: Students and staff will complete an online survey identifying level of use and implementation needs for the upcoming year. October: Survey results will be shared with the building and district leadership teams. Discussion and planning of identified needs will be determined and an implementation plan will be discussed. November-April: Students and staff will use Chromebooks, GAFE, and district purchased applications. Staff will execute the implementation plan based upon the needs determined through the survey. May: Survey staff and students using follow-up surveys and implementation rubric. June: The Technology Task Force will identify gaps and summer professional development needs and make adjustments for the upcoming year. Preparation will be made for professional development for new employees to begin in July. Starting in June 2018, new Chromebooks for 6th grade, freshmen students, and cart replacements will be ordered, received, configured, and added to the Google Mgt Console by IT department.</td>
<td></td>
</tr>
</tbody>
</table>

E) SUBSTANTIAL IMPACT AND LASTING VALUE

24. Describe the expected changes to the instructional and/or organizational practices in your institution.

The response should illustrate the critical instructional and/or organizational changes that will result from implementation of the grant and the impact of these changes. These changes can include permanent changes to current district processes, new processes that will be incorporated or the removal of redundant processes. The response may also outline the expected change in behaviors of individuals (changes to classroom practice, collaboration across district boundaries, changes to a typical work day for specific staff members, etc.). The expected changes should be realistic and significant in moving the institution forward.

Please enter your response below:

Rural school districts are tasked with creating an environment and opportunities for students to thrive in the development of 21st Century skills, especially for economically disadvantaged students with little or no access to technology. The incorporation of technology into the learning process can foster the development of creativity, critical thinking and problem solving skills. "In essence, the solution consists of the integration of advances in pedagogy (especially built on how we learn), in technology (especially around engagement), and in change knowledge (especially around making change easier). If we get the combination right, the floodgates of learning will open and there will be an unstoppable explosion of energy and participation by all that will benefit individuals and the world alike" (Fullan, 2013, p. 15). The movement of schools toward a technology rich environment is imperative in order to close the digital divide, ensuring that all students are given the capabilities of attaining the critical thinking skills necessary for the 21st Century. FUTURE challenges teachers to consider how students
learn today, provides access to engaging technology-rich instruction for each student in the GCLS, and advocates for change in a supportive and collaborative environment. The changes in instruction will include more student ownership by creating opportunities for student choice in learning and more engaging instruction. The access to Chromebooks or iPads for each student will allow teachers to fully integrate digital opportunities for students every day rather than a once a day or week event that makes the interaction with technology a novelty.

25. Please provide the name and contact information for the person and/or organization who will oversee the evaluation of this project.

Projects may be evaluated either internally or externally. However, evaluation must be ongoing throughout the entire period of sustainability and have the capacity to provide the Ohio Department of Education with clear metrics related to each selected goal.

Please enter your response below:

Gallia County Local Schools Technology Task Force Chair: Todd Boothe 4836 State Route 325, Patriot, Ohio 45658 Email: gl_tboothe@seovec.org Telephone: (740) 379-9085

26. Describe the overall plan for evaluation, including plans for data collection, underlying research rationale, measurement timelines and methods of analysis.

This plan should include the methodology for measuring all of the project outcomes. Applicants should make sure to outline quantitative approaches to assess progress and measure the overall impact of the project proposal. The response should provide a clear outline of the methods, process, timelines and data requirements for the final analysis of the project’s progress, success or shortfall. The applicant should provide information on how the lessons learned from the project can and will be shared with other education providers in Ohio. Note: A complete and comprehensive version of the evaluation plan must be submitted to ODE by all selected projects.

The district’s evaluation protocol will be based upon the evaluation piece included in the Five Step Process, as it relates to the Ohio Improvement Process (Ohio Department of Education). This process includes reviewing collected data, including gathering evidence of implementation and impact, and then re-identifying needs and making adjustments (Ohio Department of Education). The Five-Step Process will be perfect evaluation framework, as most of what needs to be assessed includes implementation and usage. It is important to evaluate the project by identifying that relevance to 21st century skills and effectiveness of use exists in regard to student learning and classroom instruction, that the devices are being used effectively, and that the project continues to be sustainable. Further, methods for formatively evaluating the project, as well as a summative evaluation needs to be included. By reviewing the identified areas, as well as tracking progress and overall outcomes, the project can be adjusted, as needed, so that it remains impactful. A technology task force will work collaboratively to oversee the evaluation process. A pre and post survey of students and staff will be given and analyzed to assist in assessing needs and guide the direction of the project over time. The tool will be a district-developed survey with an implementation rubric. The teacher survey will include a rubric to measure benchmarks in relation to teacher use of technology as an integral part of instruction. Additionally, both students and staff surveys will measure engagement and project implementation. The results of the surveys and rubrics will be reported to the district leadership team by the task force, and then carried back to the buildings so that schools can respond by making individual adjustments as needed. The district is more than willing to share findings with other districts. This can be done via evaluation reports submitted to the Ohio Department of Education or upon request of another district. We would be willing to present our project and findings at state and national conferences including the Connecting for Success Conference, OAASFEP conferences, National Rural Education Conference, Capital Conference, or the OETC conference. Both quantitative and qualitative data will be available, as both perceptions and actual implementation will be assessed. Evaluation Tools/Annual Timeline: September - Students and staff will complete a pre-survey.; September to May - Task Force will complete classroom walk-throughs; October, December, February, and April - Project reports will be delivered to the District Leadership Team; May - students and staff will take post-survey. Annual Evaluation Follow-Up: The Task Force will analyze post-surveys and compare them to pre-survey data; Task Force will report findings to the District Leadership Team (ie. relevance to 21st Century skills and effectiveness of use, efficiency, and sustainability); A comprehensive list of identified needs will be compiled; Adjustments will be made based upon findings; The cycle will repeat itself.

27. Please describe the likelihood that this project, if successful, can be scaled-up, expanded and/or replicated. Include a description of potential replications both within the district or collaborative group, as well as an estimation of the probability that this solution will prove useful to others. Discuss the possibility of publications, etc., to make others aware of what has been learned in this project.

The response should provide an explanation of the time and effort it would take to implement the project in another district, as well as any plans to share lessons learned with other districts. To every extent possible, applicants should outline how this project can become part of a model so that other districts across the state can take advantage of the learnings from this proposed innovative project. If there is a plan to increase the scale and scope of the project within the district or consortium, it should be noted here.

It is likely that this initiative could be replicated, as the components of the project are straight-forward. The plan includes purchasing 1:1 devices so that the district can effectively impact student achievement by providing the tools needed to truly meet individual needs and provide additional educational choices for students. The project will be sustained by implementing a rotation for new device purchases, as well as capitalizing upon energy savings and replacement device savings due to discontinuing the purchase of most desktop units. The district has already piloted the project and collected data revealing its potential for success. Students and teachers have unanimously reported that the devices have positively impacted learning in a profound manner. With college and career readiness being at the forefront of local and state educational goals, dramatic instructional shifts are necessary. It is clear that student needs must be met, and a variety of options must exist in order for this to happen. By putting devices in students’ hands, and then providing access to the appropriate programs and training, the possibilities seem endless. The district has committed the time and resources necessary to identify quality software and a digital communication platform for collaboration and productivity. This grant will allow the district to begin working innovatively with students on a whole new and exciting level. Potential student engagement will open a world of opportunities for not only the students in the Gallia County Local Schools, but also any district committed to such an initiative. To scale-up, districts should join together to lobby for better internet connectivity. Being in a rural area, many students do not have access at home. Even though Chromebooks have the ability to be used offline, it is important, in order to continue moving forward, to see that all homes are capable of connecting. Districts need to align and lobby for access for all.

By virtue of applying for the Straight A Fund, all applicants agree to participate in the overall evaluation of the Straight A Fund for the duration of the
evaluation time frame. The Governing Board of the Straight A Fund reserves the right to conduct an evaluation of the project and request additional information in the form of data, surveys, interviews, focus groups and other related data on behalf of the General Assembly, Governor and other interested parties for an overall evaluation of the Straight A Fund.

PROGRAM ASSURANCES: I agree, on behalf of this applicant, and any or all identified consortium members or partners, that all supporting documents contain information approved by a relevant executive board or its equivalent and to abide by all assurances outlined in the Straight A Assurances (available in the document library section of the CCIP).

On behalf of the Gallia County Local Schools, it is agreed that the district will abide by all assurances outlined when applying for this grant. Todd Boothe
No consortium contacts added yet. Please add a new consortium contact using the form below.
<table>
<thead>
<tr>
<th>Partnerships</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallia County Local (065680) - Gallia County - 2017 - Straight A Fund - Rev 0 - Straight A Fund</td>
</tr>
</tbody>
</table>

Sections

<table>
<thead>
<tr>
<th>Partnerships</th>
</tr>
</thead>
<tbody>
<tr>
<td>No partners added yet. Please add a new partner by using the form below.</td>
</tr>
</tbody>
</table>
Implementation Team

Todd Boothe
Director of Technology

The district Director of Technology will oversee grant implementation and sustainability, as well as chair the district Technology Task Force. He will work to see that this project remains a priority for the district. As the project leader, he will work as a partner with the district’s Director of Instructional Services to see that any and all technology and curriculum gaps are bridged, in order to maximize the effectiveness of the implementation to ensure that true instructional shifts and additional student opportunities are realized.

Responsibilities
- The following certifications and experiences certainly qualify this individual to implement and lead this project:
 - Experienced district Technology Director
 - Former Teacher
 - ITIL V3 Certified
 - Microsoft SMS Certified
 - NSC Project Manager Certified
 - AMA Leadership and Management Certification
 - Entrepreneur

Prior Relevant Experience
2013- Present: Director of Technology and EMIS Coordinator for Gallia County Local Schools. I implemented several changes since start of employment that include upgrading WAN’s in all buildings with Cisco Merakis, replaced legacy servers and virtualized all new servers with VMware and implemented Veeam backups, moved all OS platforms to Windows 7, developed and implemented an online helpdesk, implemented new door and camera security systems in all buildings, standardized hardware platforms, upgraded all legacy switches and routers, performed under budget all years, partnered with Administrative Team to implement Pre-K in all Elementaries, and partnered with Administrative Team to develop and implement a Digital Academy.

2010- Present: Own and operate two businesses Responsible for planning, strategy, vision and direction, budget management, employee payroll and benefits management, licensing and compliance with Federal, State and Local laws and statutes and community engagement.

2010- 2013: Career Technical Multimedia Teacher in GCLS.

1996-2010: Held multiple positions for 15 years at Nationwide Insurance including Computer Programmer, Software Specialist II/III, NSC Project Manager and NSC Desktop Engineering Team Lead over Plan/Build/Run Teams. I was responsible for standardizing hardware platforms including desktop, laptop, tablet and printers for Nationwide’s 40,000 users, building master images for all platforms, negotiating vendor contracts, scripting and deployment of software packages via Microsoft SMS to all 50,000 supported PCs, integrating newly acquired companies infrastructure with Nationwide Service Company. Other responsibilities include creating Metric and Data element definitions and monitoring to

Education
- B.S. in Electrical Engineering, Career and Technical Education Licensure Program, M.S. in Educational Leadership

% FTE on Project
- 40
ensure all NSC Desktop Teams were performing at efficient and effective levels following ITIL principles and best practices.