Budget

U.S.A.S. Fund #: 466
Plus/Minus Sheet (opens new window)

<table>
<thead>
<tr>
<th>Purpose Code</th>
<th>Object Code</th>
<th>Salaries 100</th>
<th>Retirement Fringe Benefits 200</th>
<th>Purchased Services 400</th>
<th>Supplies 500</th>
<th>Capital Outlay 600</th>
<th>Other 800</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>43,750.00</td>
<td>0.00</td>
<td>0.00</td>
<td>43,750.00</td>
</tr>
<tr>
<td>Support Services</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Governance/Admin</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>136,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>136,000.00</td>
</tr>
<tr>
<td>Prof Development</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Family/Community</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Safety</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Facilities</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>794,000.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>794,000.00</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Indirect Cost</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>930,000.00</td>
<td>43,750.00</td>
<td>0.00</td>
<td>0.00</td>
<td>973,750.00</td>
</tr>
</tbody>
</table>

Adjusted Allocation: 0.00
Remaining: -973,750.00
Please respond to the prompts or questions in the areas listed below in a narrative form.

A) APPLICANT INFORMATION - General Information

1. Project Title:
 Innovation Lab @ MIT

2. Project Tweet: Please limit your responses to 140 characters.
 Re-imagining career-technical-education space to accommodate work as redefined by the millennial generation.
 This is an ultra-concise introduction to the project.

3. Estimate of total students at each grade level to be directly impacted each year.
 This is the number of students that will receive services or other benefits as a direct result of implementing this project. This does not include students that may be impacted if the project is replicated or scaled up in the future. It excludes students who have merely a tangential or indirect benefit (such as students having use of improved facilities, equipment etc. for other uses than those intended as a part of the project). The Grant Year is the year in which funds are received from the Ohio Department of Education. Years 1 through 5 are the sustainability years during which the project must be fiscally and programmatically sustained.

<table>
<thead>
<tr>
<th>Grant Year</th>
<th>Pre-K Special Education</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>0 Pre-K Special Education</td>
<td>0 K</td>
<td>0 1</td>
<td>0 2</td>
<td>0 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 4</td>
<td>0 5</td>
<td>0 6</td>
<td>0 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 9</td>
<td>125 10</td>
<td>0 11</td>
<td>0 12</td>
</tr>
<tr>
<td>Year 2</td>
<td>0 Pre-K Special Education</td>
<td>0 K</td>
<td>0 1</td>
<td>0 2</td>
<td>0 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 4</td>
<td>0 5</td>
<td>0 6</td>
<td>0 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 9</td>
<td>125 10</td>
<td>125 11</td>
<td>0 12</td>
</tr>
<tr>
<td>Year 3</td>
<td>0 Pre-K Special Education</td>
<td>0 K</td>
<td>0 1</td>
<td>0 2</td>
<td>0 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 4</td>
<td>0 5</td>
<td>0 6</td>
<td>0 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 9</td>
<td>125 10</td>
<td>125 11</td>
<td>140 12</td>
</tr>
<tr>
<td>Year 4</td>
<td>0 Pre-K Special Education</td>
<td>0 K</td>
<td>0 1</td>
<td>0 2</td>
<td>0 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 4</td>
<td>0 5</td>
<td>0 6</td>
<td>0 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>125 9</td>
<td>125 10</td>
<td>125 11</td>
<td>150 12</td>
</tr>
<tr>
<td>Year 5</td>
<td>0 Pre-K Special Education</td>
<td>0 K</td>
<td>0 1</td>
<td>0 2</td>
<td>0 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 4</td>
<td>0 5</td>
<td>0 6</td>
<td>0 7</td>
</tr>
</tbody>
</table>
4. Explanation of any additional students to be impacted throughout the life of the project. This includes any students impacted indirectly and estimates of students who might be impacted through replication or an increase in the scope of the original project.

Our plan is to start small, do it well, then expand. We used this methodology when we opened Metro Early College High School and Metro Institute of Technology (MIT). During the grant year, the Innovation Lab @ MIT will serve a minimum of 150 MIT students. During year 1, students from downtown Columbus area high schools (Cristo Rey, etc...) will share the space. By the third year, we intend for the space to be open and available for any school and/or district to participate. Our partner, Franklin University will also be using the Innovation Lab during the evenings. Even though the number of students impacted by Franklin's usage is not included for the purposes of this grant, it should be noted as a benefit to the community. Although it is challenging to make assumptions of participation, we believe that in the fourth year, the total impact of the project will reach more than 2,000 students.

5. Lead applicant primary contact: - Provide the following information:

First and last name of contact for lead applicant
Andrew Allmandinger, Principal

Organizational name of lead applicant
Metro Institute of Technology

Address of lead applicant
303 S. Grant Ave., Columbus, OH 43215

Phone Number of lead applicant
(614) 797-4797

Email Address of lead applicant
allmandinger@themetroschool.org

Community School Applicants: After your application has been submitted and is in Authorized Representative Approved status an email will be sent to your sponsoring entity automatically informing the sponsor of your application.

6. Are you submitting your application as a consortium? - Select one checkbox below

☐ Yes
☐ No

If you are applying as consortium, please list all consortium members by name on the "Consortium Member" page by clicking on the link below. If an educational service center is applying as the lead applicant for a consortium, the first consortium member entered must be a client district of the educational service center.

Add Consortium Members

7. Are you partnering with anyone to plan, implement, or evaluate your project? - Select one checkbox below

☐ Yes
☐ No

If you are partnering with anyone, please list all partners (vendors, service providers, sponsors, management companies, schools, districts, ESCs, IHEs) by name on the "Partnering Member" page by clicking on the link below.

Add Partnering Members

B) PROJECT DESCRIPTION - Overall description of project and alignment with goals

8. Describe the innovative project: - Provide the following information

The response should provide a clear and concise description of the project and its major components. The following questions will address specific outcomes and measures of success.

a. The current state or problem to be solved; and

Challenges faced by students and educators are two-fold: First, providing Career Technical space and equipment for students to train is costly, and the equipment can rapidly become outdated. Second, the high cost of college is prohibitive for our students. While they receive basic skills in high school, college tuition costs limit their ability to acquire the high-end skills necessary to support a self-sustaining career. Our proposal addresses both challenges. The Innovation Lab @ MIT will rely on software rather than equipment to train students on the latest technologically advanced career pathways. The Innovation Lab is designed to remain current with industry. This method allows for flexible programming, job training while in high school and early college access. For MIT students, this means graduating with an Associate Degree or industry-recognized certificate that could result in immediate employment, dramatically reducing their overall educational cost.
b. The proposed innovation and how it relates to solving the problem or improving on the current state.

The Innovation Lab, in partnership with Franklin University, is designed to be an open space of opportunity for students of MIT and Franklin -- and ultimately other downtown area high schools such as Cristo Rey. The physical location of the space will be on Franklin University's campus. It will be a shared space that MIT (and other high schools) will utilize during the day and Franklin will use at night, maximizing building space and utility. The career pathways to be implemented in the space will be flexible and capable of being personalized toward students' desires and goals. Franklin is a leader in providing relevant, high-demand degree programs that prepare students to compete in today's global economy. MIT and Franklin University share the same commitment to preparing students for success in the workplace. MIT and its sister school, Metro Early College High School, have well-established expertise in high school education. Our ability to get students to master the high school curriculum is well-documented. Our design allows for students to have early opportunities to take college course work. It is our plan to combine the expertise of each entity and develop a blended model of education to support the Innovation Lab that will benefit both institutions' students and the downtown education community as a whole. The Innovation Lab will be designed to function with software simulations rather than solely rely on physical lab equipment. Programs can be added or deleted via the implementation of software rather than the installation of physical lab equipment. Because Franklin must keep current in workplace trends, MIT will have the benefit of always having the postsecondary expertise on-site to train high school teachers in the use of new software packages as they become available. Because of the Innovation Lab design, the space can be transformed into what the students need it to be. This means we can ensure that the pathways implemented have a college/credential alignment so that students "working" in the space will receive college credit or credentials to support their educational mission while reducing their overall college tuition cost. In the past, CTE facilities have assumed a high cost (think construction or automotive lab). By creating an Innovation Lab in collaboration with our higher education partner, we can create an environment for a shared costing model and the pathways selected will be implemented relying on the use of "software" (think CAD) more than "equipment." In addition, while many schools and colleges promote community spaces or multi-use facilities, our proposal is strengthened by the integration of both a school (hours of operation 7 a.m. to 3 p.m.) and a college (4 p.m. to 10 p.m.) ensuring full occupancy and maximizing use. The primary request of this grant is to help implement the "Lab." Our vision is to ensure the Innovation Lab is open, flexible, and capable of transforming as needed by shifting business environments and will always benefit students by ensuring an alignment to college credit.

9. Select which (up to four) of the goals your project will address. For each of the selected goals please provide the requested information to demonstrate your innovative process. - (Check all that apply)

a. Student achievement

i. List the desired outcomes.

Examples: fewer students retained at 3rd grade, increase in graduation rate, increased proficiency rate in a content area, etc.

80% of students at MIT will earn at least 1 workforce development credential before graduating high school. Students at MIT and partnering schools will have an opportunity to receive training in business software that yields workforce credentials and college credit (transcripted). Credentials earned in the Innovation Lab translate to a higher rate of real internship or research opportunities that allow students to use their credentials outside of school. Too often, high school students completing internships are asked to complete clerical work such as copying or paperwork and not enough time digging deep into what a career's like. The Innovation Lab allows students to gain skills and earn the necessary credentials that allow them to participate in internships in more meaningful ways. They will also receive college credit. Because of the flexibility of the Lab, students will explore a variety careers - thereby saving time/money when deciding on majors at the college level.

ii. What assumptions must be true for this outcome to be realized?

Examples: early diagnosis and intervention are needed to support all children learning to read on grade level; project-based learning results in higher levels of student engagement and learning, etc.

MIT will be responsible for matching student choice with relevant education. The assumption is that students will "know" what they want to pursue. It is contingent upon MIT to present multiple opportunities for students, while also explaining the academic work necessary to achieve the student's goals. Many schools offer this service as career counseling. In truth, the world of work doesn't work that way in 2016. People gain skills and those skills are translated to projects. We experience and research has taught us that students will not join a workforce that has one career choice and then follow that choice for 30 years until retirement. MIT counseling will offer the world of work to students as it is - multiple projects with multiple skills needed. It is contingent on MIT to ensure the breadth of choices are obtainable for students and pathways can be designed.

iii. Describe any early efforts you have made to test these assumptions (pilot implementation, etc), or how these are well-supported by the literature.

We have always focused our education pathways with the economic needs of the Central Ohio region. In answering the need for more people needing coding and computer science skills to support the economy of Central Ohio, MIT and Metro Early College implemented a similar program focused on Computer Science programming. Students who participated had high levels of success including: - 82% of students mastered (90% - A) Exploring Computer Science during the fall semester of 2015-2016 - 72 students are currently enrolled in AP Computer Science (Computer Science Principles) as high school freshman Thus, these students will be able to engage in higher-level credentialing courses while still in high school. We expect students will achieve similar results through the Innovation Lab as the career pathways are expanded. But this is not enough. Central Ohio's workforce needs are not being met; employers need skilled employees. According to the JPMorgan Chase & CO New Skills at Work report that nearly 10,000 middle-skill job openings are projected in Columbus Ohio every year through 2018. Employers are having difficulty finding applicants to fill those middle-skilled positions. High schools can play an important role in addressing the workforce needs by providing students opportunities to earn credentials while in high school. Graduates would be career ready and/or ready to advance their education through a 2- or 4-year institute of higher education. -Columbus 2020 Goals were developed to: *Create over 150,000 jobs *Increase the per capita income by 30% *Have $8 billion invested in the area Data suggests that Columbus is well on our way to exceeding this goal. Current data indicates that 107,805 jobs were created as of June 2015 and there has been a 13% increase in per capita income as of December 2013. MIT is well on its ways to having students who are job ready and who are credentialed in a field of study. According to the Central Ohio Compact: -17,000 Central Ohio students start 9th grade yet only 12,300 graduate (dropout rate of 27.6%) -Of the 12, 300 hs graduates, only 5,066 enter a public college or university (does not include private post-secondary institutions) -Of those 5,066 about 55% (2,771 students) required remedial course work -Only 1,829 out of the 5,066 who entered college will graduate and complete their degree (11% completion rate from 9th grade) Currently at 42% of adults in
Central Ohio have earned some post-secondary degree or credential (2-yr degree, 4-yr degree, etc.). The Compact has set a goal of 60% degree attainment by 2025. The above statistics show that post-secondary institutions need to do more to engage our students, keep them involved in school programs, guide them to find where their passion and skills meet, and help them succeed at completing a program in that area and earning a post-secondary degree or credential. The Innovation Lab @ MIT will be 1 step in the process to help students reach that goal.

iv. List the specific indicators that you will use to measure progress toward your desired outcome.
These should be measurable changes, not merely the accomplishment of tasks. Example: Teachers will each implement one new project using new collaborative instructional skills, (indicates a change in the classroom) NOT; teachers will be trained in collaborative instruction (which may or may not result in change).

MIT will measure the success of the program and the progress made toward program goals by collecting relevant data on indicators throughout the life of the project. Indicators include, but are not limited to: -The number of students using the space on a daily basis (career tech course enrollment), -Number of internships completed in an associated pathway (course enrollment and placement data), and the -Number of other partner schools that are utilizing the space. These outcome goals will be measured once a semester (August - December, January, February - June) and recorded for evaluative purposes.

v. List and describe pertinent data points that you will use to measure student achievement, providing baseline data to be used for future comparison.
Baseline data for the outcomes and indicators will be collected at the beginning of the grant year. Data also will be collected on these measures at the end of the grant year and then reported annually each year after that.

vi. How are you prepared to alter the course of your project if assumptions prove false or outcomes are not realized?
If our assumptions prove false, and students do not "know" what they want to study, or which career industry they want to pursue, MIT will work to create more robust programs exploring each pathway area so that students can gain more exposure in a particular area before making a choice. This will include giving students the opportunity to explore certain pathways from the moment they set foot on campus as a freshman. MIT will also work to include more career exploration through career inventories, interest surveys, skills inventories, job shadowing, service learning, and unrelated internship opportunities. MIT will work consistently to ensure that students are learning more about their skills and career interests on a daily basis so that each student can make an informed decision when it comes time to decide which career pathway and credential they want to pursue through the Innovation Lab @ MIT.

b. Spending reductions in the 5 year forecast

i. List the desired outcomes.
Examples: lowered facility cost as a result of transition to more efficient systems of heating and lighting, etc.; or cost savings due to transition from textbook to digital resources for teaching.

ii. What assumptions must be true for this outcome to be realized?
Example: transition to "green energy" solutions produce financial efficiencies, etc.; or available digital resources are equivalent to or better than previously purchased textbooks.

iii. Describe any early efforts you have made to test these assumptions (pilot implementation, etc), or how these are well-supported by the literature.

iv. Please enter the Net Cost Savings from your FIT.

v. List and describe the budget line items where spending reductions will occur.

vi. How are you prepared to alter the course of your project if assumptions prove false or outcomes are not realized?

c. Utilization of a greater share of resources in the classroom

i. List the desired outcomes.
Example: change the ratio of leadership time spent in response to discipline issues to the time available for curricular leadership.

As students transition into the Innovation Lab and into college coursework, 9-12 teachers and administrators will be reduced (in some cases) and repurposed to spend more time with students who need support to become "masters" of the high school content before moving into college coursework. The Innovation Lab will also reduce facility cost. As it is a shared space with Franklin, each institution will reduce operation costs. The benefit to students and community is great. The Innovation Lab will: -Providing opportunity to students of schools who might not have had this opportunity with their "home" high school -Developing the "next gen" workforce who are able to fill job needs in central Ohio

ii. What assumptions must be true for this outcome to be realized?
Examples: improvements to school and classroom climate will result in fewer disciplinary instances allowing leadership to devote more time to curricular oversight.

Partners will need to accept that a high school can provide high quality, high tech training. Employers recognize that students have capability, but not necessarily the maturity to engage in the workforce. MIT will not only need to work on the technical skills of students but the interpersonal skills as well. Employers will need to be engaged in the project from the beginning to ensure the pipeline is complete on
10. Which of the following best describes the proposed project? - (Select one)

a. New - Never before implemented
b. Existing - Never implemented in your community school or school district but proven successful in other educational environments
c. Replication - Expansion or new implementation of a previous Straight A Project
d. Mixed Concept - Incorporates new and existing elements
e. Established - Elevating or expanding an effective program that is already implemented in your district, school or consortium partnership
C) BUDGET AND SUSTAINABILITY

11. Financial Information: All applicants must enter or upload the following supporting information. The information in these documents must correspond to your responses in questions 12-19.

| Enter Budget | b. If applicable, upload the Consortium Budget Worksheet (by clicking the Upload Documents link below) | c. Upload the Financial Impact Table (by clicking the Upload Documents link below) |

Upload Documents

The project budget is entered directly in CCIP. For consortia, this project budget must reflect the information provided by the applicant in the Consortium Budget Worksheet. Directions for the Financial Impact Table are located on the first tab of the workbook. Applicants must submit one Financial Impact Table with each application. For consortium applications, please add additional sheets instead of submitting separate Financial Impact Tables.

973,750.00 12. What is the amount of this grant request?

13. Provide a brief narrative explanation of the overall budget.

Responses should provide a rationale and evidence for each of the budget items and associated costs outlined in the project budget. In no case should the total projected expenses in the budget narrative exceed the total project costs in the budget grid.

Metro Institute of Technology is requesting $930,000 for this grant. The total request includes $794,000 in lab renovation costs (7,900 sq. ft. @ approximately $100/sq. ft.), $93,000 in project management fees to Battelle Education, $93,000 in project evaluation fees to The PAST Foundation, $43,750 in software site license costs (175 students @ $250/student), and $10,000 in administrative costs to Metro Institute of Technology. The Innovation Lab will be a flexible facility that allows for collaboration between groups and the ability to be customized to meet the particular needs of an individual group. This includes large open classrooms, glass walls, large garage doors to connect spaces or separate them when necessary, movable furniture, and lots of power. This type of flexible space will serve the students of MIT, partnering schools in central Ohio, and Franklin University extremely well. For example, a high school chemistry class might use the lab one day for an experiment involving testing the acidity of materials, while the computer science teacher might use the lab the next day to teach students how routers send wireless Internet signals from one point to the next. The lab space will also be able to be used for career credentialing certificates and classes. One example of such a certificate would be a Computer Aided Drafting (CAD) Technician certificate that prepares students for success in designing products and materials in the engineering fields. Capital outlay purchases will include equipment such as projectors and electronics that will allow the staff to utilize digital content easily. Supplies and materials purchases will include movable furniture such as tables/desks, chairs, and extension cords that will allow for space customization and for all users to be connected when necessary.

14. Please provide an estimate of the total costs associated with maintaining this program through each of the five years following the initial grant implementation year (sustainability costs). This is the sum of expenditures from Section A of the Financial Impact Table.

<table>
<thead>
<tr>
<th>Sustainability Year 1</th>
<th>Sustainability Year 2</th>
<th>Sustainability Year 3</th>
<th>Sustainability Year 4</th>
<th>Sustainability Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>325,875.00</td>
<td>401,500.00</td>
<td>499,000.00</td>
<td>499,000.00</td>
<td>499,000.00</td>
</tr>
</tbody>
</table>

15. Please provide a narrative explanation of sustainability costs.

Sustainability costs include any ongoing spending related to the grant project after June 30, 2017. Examples of sustainability costs include annual professional development, staffing costs, equipment maintenance, and software license agreements. To every extent possible, rationale for the specific amounts given should be outlined. The costs outlined in this narrative section should be consistent and verified by the financial documentation submitted and explained in the Financial Impact Table. If the project does not have sustainability costs, applicants should explain why.

Sustainability costs for purchased services include rent/lease of space, tuition, and the cost of CTE End-of-Course Tests for all students who complete a program or pathway. Specific costs from FY18-FY22 are listed in this explanation. FY18 = $270,000 rent, $36,000 tuition, and $1,875 in CTE End-of-Course Tests. FY19 = $350,000 rent, $96,000 tuition, and $5,000 in CTE End-of-Course Tests. FY20 = $350,000 rent, $96,000 tuition, and $5,000 in CTE End-of-Course Tests. FY21 = $350,000 rent, $96,000 tuition, and $5,000 in CTE End-of-Course Tests. The sustainability costs for supplies and materials include software licensing fees for the required software for pathways courses, office supplies for the classroom (paper, pencils, tape, staples, etc.), and college textbooks for all students in college courses. Examples of software that might be necessary include 3D Modeling or CAD software, robotics software, notepad++, adobe premier, and others. Specific costs for FY18-FY22 are listed in this explanation. FY18 = $2,250 (75 student software site licenses @ $30/student), $750 in classroom supplies (paper, printing, etc.), and $1,500 in textbooks (75 books @ $200/book). FY19 = $4,500 (150 student software site licenses @ $30/student), $1,250 in classroom supplies (paper, printing, etc.), and $3,000 in textbooks (150 books @ $200/book). FY20 = $6,000 (200 student software site licenses @ $30/student), $2,000 in classroom supplies (paper, printing, etc.), and $4,000 in textbooks (150 books @ $200/book). FY21 = $6,000 (200 student software site licenses @ $30/student), $2,000 in classroom supplies (paper, printing, etc.), and $4,000 in textbooks (150 books @ $200/book).

81.00 16. What percentage of these costs will be met through cost savings achieved through implementation of the program?

Total cost savings from section B of the Financial Impact Table divided by total sustainability cost from section A of the Financial Impact Table. If the calculated amount is greater than 100, enter 100 here.
17. Please explain how these cost savings will be derived from the program.

Applicants who selected spending reductions in the five-year forecast as a goal must identify those expected savings in questions 16 and 17. All spending reductions must be verifiable, permanent, and credible. Explanation of savings must be specific as to staff counts; salary/benefits; equipment costs, etc.

The cost-savings for this project will not cover the sustainability costs on their own. Therefore, we will also reallocate some of our savings to cover the rest of our sustainability costs. Actual cost-savings we will show are a reduction in staff, 4 staff members over the course of the grant year and the following 5 sustainability year’s (FY18-FY22) as well as a reduction in rent by the amount of partnership students (non-MIT students) that utilize the space. FY18 = $203,953.95 reduction in staff (3 staff members @ $67,984.65), and $60,000 reduction in rent (15 non-MIT students @ $4,000/student). FY19 = $237,946.28 reduction in staff (3.5 staff members @ $67,984.65), and $120,000 reduction in rent (30 non-MIT students @ $4,000/student). FY20 = $271,938.60 reduction in staff (4 staff members @ $67,984.65), and $120,000 reduction in rent (30 non-MIT students @ $4,000/student). FY21 = $271,938.60 reduction in staff (4 staff members @ $67,984.65), and $120,000 reduction in rent (30 non-MIT students @ $4,000/student).

19.00 18. What percentage of sustainability costs will be met through reallocation of savings from elsewhere in the general budget?

Total reallocation from section C of the Financial Impact Table divided by total sustainability cost from section A of the Financial Impact Table
Note: the responses to questions 16 and 18 must total 100%

19. Please explain the source of these reallocated funds.

Reallocations of funds implies that a reduction has been made elsewhere in the budget. Straight A encourages projects to determine up front what can be replaced in order to ensure the life of the innovative project.

Reallocations of funds will come from MIT’s “Purchased Services” account. MIT will reallocate funds from staffing (including salary, benefits, insurance, etc.) and use that money to offset the cost of tuition. FY18 = $61,921 (money will be moved from staffing to offset tuition costs). FY19 = $43,554 (money will be moved from staffing to offset tuition costs). FY20 = $271,938.60 reduction in staff (4 staff members @ $67,984.65), and $120,000 reduction in rent (30 non-MIT students @ $4,000/student). FY21 = $271,938.60 reduction in staff (4 staff members @ $67,984.65), and $120,000 reduction in rent (30 non-MIT students @ $4,000/student).

D) IMPLEMENTATION

20. Please provide a brief description of the team or individuals responsible for the implementation of this project, including other consortium members or partners.

This response should include a list of qualifications for the applicant and others associated with the grant. Please list key personnel only. If the application is for a consortium or a partnership, the lead should provide information on its ability to manage the grant in an effective and efficient manner. Include the partner/consortium members' qualifications, skills and experience with innovative project implementation and projects of similar scope.

Enter Implementation Team Key Personnel information by clicking the link below:
Add Implementation Team

For Questions 21-23 please describe each phase of your project including its timeline, and scope of work.

A complete response to these questions will demonstrate awareness of the context in which the project will be implemented and the time it will take to implement the project with fidelity. A strong plan for implementing, communicating and coordinating the project should be apparent, including coordination and communication in and amongst members of the consortium or partnership (if applicable). Not every specific action step need be included, but the outline of the major steps should demonstrate a thoughtful plan for achieving the goals of the project. The timeline should reflect significant and important milestones in an appropriate time frame.

21. Planning

a. Date Range June 2016-August 2016

b. Scope of activities - include all specific completion benchmarks.

June - August 2016 Initial Planning Phase. -Finalize project plan -Finalize partnership agreements -Finalize roles and responsibilities for each partner -Arrange a project implementation team kickoff meeting at project launch. -Create a communication plan among project leaders, implementers, and evaluators for implementation

22. Implementation (grant funded start-up activities)

a. Date Range August 2016-June 2017

b. Scope of activities - include all specific completion benchmarks.

August 2016-December 2016 Begin Construction and build out pathways -Initiate and monitor construction progress -Build partnerships with businesses to secure internships for students -Development of credentialing programs in Manufacturing, Computer Science, and Medical Technology -Develop curriculum for HS Computer Science course that will engage students in hands on learning in the lab space and build skills on pathway to credentialing program -Develop curriculum for HS engineering course that will engage students in hands on learning in the lab space and build skills on pathway to credentialing program -Project implementation team meets monthly to evaluate progress and plan changes as needed January 2017-June 2017 Use Space. MIT (and other high schools) will utilize during the shared space during the day and Franklin will use at night, maximizing building space and utility. -Space opened for student and teacher use (expect to impact 175 MIT students) -Use space for high school and college level classes including Computer Science and Engineering -High School partner begins
23. Programmatic Sustainability (years following implementation, including institutionalization of program, evaluation and communication of program outcomes)

a. Date Range: July 2017–June 2022

b. Scope of activities - include all specific completion benchmarks

Institutionalization of the program - After the grant year, MIT will continue to grow the pathways for students utilizing flexible space and incorporating feedback from the evaluation. Completion benchmarks overtime include: -250 Internships completed by 2022 -400 credentials earned by MIT students by 2022 -400 credentials earned by adult education students by 2022 -Identify ways we can increase the size of program to impact more students through additional school partnerships

E) SUBSTANTIAL IMPACT AND LASTING VALUE

24. Describe the expected changes to the instructional and/or organizational practices in your institution.

The response should illustrate the critical instructional and/or organizational changes that will result from implementation of the grant and the impact of these changes. These changes can include permanent changes to current district processes, new processes that will be incorporated or the removal of redundant processes. The response may also outline the expected change in behaviors of individuals (changes to classroom practice, collaboration across district boundaries, changes to a typical work day for specific staff members, etc.). The expected changes should be realistic and significant in moving the institution forward.

Please enter your response below:

The Innovation Lab at MIT will make our instructional and organizational practices real. MIT was founded to provide students with solid skills and credentials to prepare them for college or career. This innovation space will allow us to partner with the higher ed and industry partners to provide students with “real” experiences to utilize the skills they have learned in class. Teachers will guide students to apply learned knowledge to real world problems and increase job readiness skills by completing and earning workforce credentials.

25. Please provide the name and contact information for the person and/or organization who will oversee the evaluation of this project.

Projects may be evaluated either internally or externally. However, evaluation must be ongoing throughout the entire period of sustainability and have the capacity to provide the Ohio Department of Education with clear metrics related to each selected goal.

Please enter your response below:

Dr. Monica Hunter Director of Research, The PAST Foundation mhunter@pastfoundation.org

26. Describe the overall plan for evaluation, including plans for data collection, underlying research rationale, measurement timelines and methods of analysis.

This plan should include the methodology for measuring all of the project outcomes. Applicants should make sure to outline quantitative approaches to assess progress and measure the overall impact of the project proposal. The response should provide a clear outline of the methods, process, timelines and data requirements for the final analysis of the project’s progress, success or shortfall. The applicant should provide information on how the lessons learned from the project can and will be shared with other education providers in Ohio. Note: A complete and comprehensive version of the evaluation plan must be submitted to ODE by all selected projects.

The overall plan for evaluation for the Innovation Lab @ MIT project involves both formative (qualitative) and summative (quantitative) evaluation. Use of both formative and summative evaluation is intended to aid the project to: 1) establish baseline data, 2) determine effective modifications during the course of the grant, 3) regularly assess fidelity to project goals and outcomes, 4) identify constraints encountered that may pose threats to validity within the implementation process, and 5) review evidence of change and impact. Evaluation will be embedded within the project to assure the project is focused and responsive. A complete and fully detailed evaluation plan will be submitted by October 2016. Formative evaluation will use a mixed-methods approach, involving qualitative and quantitative assessments, producing quarterly reporting and real-time data to the project team during the grant year (2016–17) and continue through year 2 (2018–19). Formative evaluation will combine key informant interviews, focus groups, structured observation, and online surveys, capturing the voice of stakeholders including teachers, students, administrators, university, and industry partners to identify enabling strategies that emerge in early stages of the project, and constraints encountered. Structured focus groups with teachers will be conducted to establish in-depth, thematic understanding of presence/absence of progress in attaining project outcomes that can be quantitatively translated to prioritize effective strategies for deployment in succeeding years of the project. Pre/post surveys will be employed in years 1-2 to track change over time associated with implementation of program components, including stakeholder understanding of short-term and long-term goals, level of buy-in, and expectations related to student outcomes. Surveys will also be conducted with participating students to track exposure to career pathways; perceptions about skills gained through CTE coursework; and, benefits of internships/capstone experience and expectations for success in college and career. Summative evaluation will track metrics during the grant period associated with major project goals and outcomes. These include increased number of credentialing courses offered to students; student enrollment in courses using the innovative space; the number and types of credentials earned by students, numbers of high school students earning college credit, and placement data on internships and capstones completed in associated pathway fields. Metrics will also be tracked on numbers of teachers certified for particular CTE courses; numbers of CTE courses offered via online instruction; numbers of business partners engaged in the project; and, number of internships offered in the fields of manufacturing, computer science, and medical technology. A metric tracking instrument will be
designed in the grant year and will be used to measure project results throughout the grant period to June 2022. The instrument developed to track summative metrics will be updated and reported annually through 2022. Evaluative reporting for formative actionable modification will occur in 2016-17, 2017-18, and 2018-19 with final summation reported in fall 2019. The summative instrument to collect quantitative metrics will continue to produce annual data through 2022. The information garnered from the evaluation of the project will be shared through published reports presentations at professional meetings related to K-12 STEM education, and applied research and evaluation in STEM education.

27. Please describe the likelihood that this project, if successful, can be scaled-up, expanded and/or replicated. Include a description of potential replications both within the district or collaborative group, as well as an estimation of the probability that this solution will prove useful to others. Discuss the possibility of publications, etc., to make others aware of what has been learned in this project.

The response should provide an explanation of the time and effort it would take to implement the project in another district, as well as any plans to share lessons learned with other districts. To every extent possible, applicants should outline how this project can become part of a model so that other districts across the state can take advantage of the learnings from this proposed innovative project. If there is a plan to increase the scale and scope of the project within the district or consortium, it should be noted here.

Metro Early College High School has been at the forefront of educational innovation in the state of Ohio, and the nation, for 10 years. It is the Metro principles that have established MIT as a “sister” school to MECHS. This experience with school innovation, replication, and expansion is what will allow MIT to successfully scale-up its own lab as well as expanding its reach. This "scale-up" will allow for more partners to access and use the facility, both during the day (grades 9-13) and evening (higher-ed). This will have a tremendous impact on the community by providing the necessary training to fill the skills gap that is currently being experienced in Columbus. This innovation space will fit perfectly within the goals of Columbus 2020 (economic development of Columbus, Ohio) and the Central Ohio Compact (60% of adults will earn a postsecondary credential).

By virtue of applying for the Straight A Fund, all applicants agree to participate in the overall evaluation of the Straight A Fund for the duration of the evaluation time frame. The Governing Board of the Straight A Fund reserves the right to conduct an evaluation of the project and request additional information in the form of data, surveys, interviews, focus groups and other related data on behalf of the General Assembly, Governor and other interested parties for an overall evaluation of the Straight A Fund.

PROGRAM ASSURANCES: I agree, on behalf of this applicant, and any or all identified consortium members or partners, that all supporting documents contain information approved by a relevant executive board or its equivalent and to abide by all assurances outlined in the Straight A Assurances (available in the document library section of the CCIP).

Andrew K. Allmandinger, Principal - Metro Institute of Technology
<table>
<thead>
<tr>
<th>Consortium Contacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>No consortium contacts added yet. Please add a new consortium contact using the form below.</td>
</tr>
<tr>
<td>First Name</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Carl</td>
</tr>
<tr>
<td>Cathy</td>
</tr>
<tr>
<td>David</td>
</tr>
<tr>
<td>Monica</td>
</tr>
<tr>
<td>First Name</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>Cathy</td>
</tr>
<tr>
<td>Andrew</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>David Burns</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Office of Workforce Development and Secondary Education, which was comprised of Career Technical Education as well as Middle and High School Transformation initiatives. His work while leading this office included state policy efforts that pioneered credit flexibility, STEM schools, STEM networks and stackable certificates.

Ohio STEM Learning Network led the State of Tennessee to ask Burns to aid them in starting their own state STEM network of schools. Essentially, David Burns supported Tennessee in replicating the Ohio STEM Learning Network (OSLN), taking the lessons learned from Ohio and creating the Tennessee STEM Innovation Network (TSIN). Through the TSIN he has facilitated the start-up and launch of another ten STEM schools, in Tennessee. By leading the charge in Ohio and Tennessee, David Burns has been influential in the creation of the 20-state STEMx network of state-based STEM networks focused on supporting STEM innovation in classrooms in states like North Carolina, New York, Texas, and Washington.

<table>
<thead>
<tr>
<th>Monica Hunter</th>
<th>Director of Research - The PAST Foundation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Hunter will be responsible for project evaluation research design, management and oversight of data collection, and reporting.</td>
<td>Evaluation of K-12 STEM school transformation in Ohio since 2007 with (70) school districts involving (197) buildings; formative evaluation of PD to support STEM transdisciplinary problem based learning, blended learning, and school design program implementation at the classroom level for K-12 teachers.</td>
</tr>
</tbody>
</table>

Ph.D., Anthropology, University of California, Los Angeles; B.A. Radio, Television and Film, California State University, Long Beach
studies on K-12 STEM pilot programs associated with Metro Early College High School, Columbus, OH (2007); Morriss Math and Engineering Elementary School (2009); Dayton Regional STEM School, Dayton, OH (2010); Electronic Classroom of Tomorrow (ECOT), Columbus, OH (2014); and, Clean Technologies Early College High School, Ballston Spa, NY (2012-15).

Carl Brown
Executive Director of Facilities, Planning and Management Services
Carl will be responsible for managing the facilities side of the project.
Mr. Brown is the Executive Director of Facilities, Planning and Management Services at Franklin University/Urbana University
Carl has been directing the Facilities, Planning and Management Services at Franklin University for seven years. Prior to joining Franklin, he spent 19 years as the Building Maintenance Superintendent for the Ohio School for the Deaf/Ohio State School for the Blind
Bachelor of Applied Science (B.A.Sc.) from Franklin University; Ohio Certified Public Manager, Business Management, OCPM Designation